SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Murén Eva) srt2:(2007-2009)"

Sökning: WFRF:(Murén Eva) > (2007-2009)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gustavsson, Marie, et al. (författare)
  • Functional genomics of monensin sensitivity in yeast : Implications for post-Golgi traffic and vacuolar H+-ATPase function
  • 2008
  • Ingår i: Molecular Genetics and Genomics. - : Springer Science and Business Media LLC. - 1617-4615 .- 1617-4623. ; 280:3, s. 233-248
  • Tidskriftsartikel (refereegranskat)abstract
    • We have screened a complete collection of yeast knockout mutants for sensitivity to monensin, an ionophore that interferes with intracellular transport. A total of 63 sensitive strains were found. Most of the strains were deleted for genes involved in post-Golgi traffic, with an emphasis on vacuolar biogenesis. A high correlation was thus seen with VPS and VAM genes, but there were also significant differences between the three sets of genes. A weaker correlation was seen with sensitivity to NaCl, in particular rate of growth effects. Interestingly, all 14 genes encoding subunits of the vacuolar H(+)-ATPase (V-ATPase) were absent in our screen, even though they appeared in the VPS or VAM screens. All monensin-sensitive mutants that could be tested interact synthetically with a deletion of the A subunit of the V-ATPase, Vma1. Synthetic lethality was limited to mutations affecting endocytosis or retrograde transport to Golgi. In addition, vma1 was epistatic over the monensin sensitivity of vacuolar transport mutants, but not endocytosis mutants. Deletions of the two isoforms of the V-ATPase a subunit, Vph1 and Stv1 had opposite effects on the monensin sensitivity of a ypt7 mutant. These findings are consistent with a model where monensin inhibits growth by interfering with the maintenance of an acidic pH in the late secretory pathway. The synthetic lethality of vma1 with mutations affecting retrograde transport to the Golgi further suggests that it is in the late Golgi that a low pH must be maintained.
  •  
2.
  • Murén, Eva, et al. (författare)
  • Rescue and characterization of episomally replicating DNA from the moss Physcomitrella
  • 2009
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 106:46, s. 19444-19449
  • Tidskriftsartikel (refereegranskat)abstract
    • The moss Physcomitrella is unique among plants in that it permits efficient gene targeting by homologous recombination. Furthermore, transformed DNA can replicate episomally in Physcomitrella. Here we show that episomally replicating DNA can berescued back into E. coli, and use such rescue to study the fate of the transformed DNA. Significantly, plasmids rescued from moss transformed with circular DNA are identical to the original plasmid, whereas plasmids rescued from moss transformed with linearized DNA frequently have deletions created by direct repeat recombination.These events are highly predictable in that they target the longest direct repeat on the plasmid, if this repeat is at least 12 bp. Episomal transformants obtained with linearized DNA show a more than 1000-fold amplification of the DNA whereas transformants obtained with circular DNA have much lower copy numbers. Most episomal transformants quickly lose the plasmid in the absence of selection, but a semi-stable type of transformant that loses the plasmid at a much lower frequency was also observed. The consistent rescue of the original plasmid, or of predictable derivatives thereof, suggests that molecular genetics methods which rely on shuttle plasmids are feasible in Physcomitrella
  •  
3.
  • Orzechowski Westholm, Jakub, 1977-, et al. (författare)
  • Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3
  • 2008
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 9, s. 601-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Expression of a large number of yeast genes is repressed by glucose. The zinc finger protein Mig1 is the main effector in glucose repression, but yeast also has two related proteins: Mig2 and Mig3. We have used microarrays to study global gene expression in all possible combinations of mig1, mig2 and mig3 deletion mutants. Results: Mig1 and Mig2 repress a largely overlapping set of genes on 2% glucose. Genes that are upregulated in a mig1 mig2 double mutant were grouped according to the contribution of Mig2. Most of them show partially redundant repression, with Mig1 being the major repressor, but some genes show complete redundancy, and some are repressed only by Mig1. Several redundantly repressed genes are involved in phosphate metabolism. The promoters of these genes are enriched for Pho4 sites, a novel GGGAGG motif, and a variant Mig1 site which is absent from genes repressed only by Mig1. Genes repressed only by Mig1 on 2% glucose include the hexose transporter gene HXT4, but Mig2 contributes to HXT4 repression on 10% glucose. HXT6 is one of the few genes that are more strongly repressed by Mig2. Mig3 does not seem to overlap in function with Mig1 and Mig2. Instead, Mig3 downregulates the SIR2 gene encoding a histone deacetylase involved in gene silencing and the control of aging. Conclusions: Mig2 fine-tunes glucose repression by targeting a subset of the Mig1-repressed genes, and by responding to higher glucose concentrations. Mig3 does not target the same genes as Mig1 and Mig2, but instead downregulates the SIR2 gene.
  •  
4.
  • Tronnersjö, Susanna, et al. (författare)
  • The jmjN and jmjC domains of the yeast zinc finger protein Gis1 interact with 19 proteins involved in transcription, sumoylation and DNA repair
  • 2007
  • Ingår i: Molecular Genetics and Genomics. - : Springer Science and Business Media LLC. - 1617-4615 .- 1617-4623. ; 277:1, s. 57-70
  • Tidskriftsartikel (refereegranskat)abstract
    • The jumonji domain is a highly conserved bipartite domain made up of two subdomains, jmjN and jmjC, which is found in many eukaryotic transcription factors. The jmjC domain was recently shown to possess the histone demethylase activity. Here we show that the jmjN and jmjC domains of the yeast zinc finger protein Gis1 interact in a two-hybrid system with 19 yeast proteins that include the RecQ helicase Sgs1, the silencing factors Esc1 and Sir4, the URI-type prefoldin Bud27 and the PIAS type SUMO ligase Nfi1/Siz2. Extensive interaction cross dependencies further suggest that the proteins form a larger complex. Consistent with this, 16 of the proteins also interact with a Bud27 two-hybrid bait, and three of them co-precipitate with TAP-tagged Gis1. The Gis1 jumonji domain can repress transcription when recruited to a promoter as a lexA fusion. This effect is dependent on both the jmjN and jmjC subdomains, as were all 19 two-hybrid interactions, indicating that the two subdomains form a single functional unit. The human Sgs1 homolog WRN also interacts with the Gis1 jumonji domain. Finally, we note that several jumonji domain interactors are related to proteins that are found in mammalian PML nuclear bodies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy