SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Muresanu Dafin) srt2:(2020-2023)"

Search: WFRF:(Muresanu Dafin) > (2020-2023)

  • Result 1-10 of 20
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Huang, Hongyun, et al. (author)
  • Clinical Neurorestorative Therapeutic Guidelines for Spinal Cord Injury (IANR/CANR version 2019)
  • 2020
  • In: JOURNAL OF ORTHOPAEDIC TRANSLATION. - : ELSEVIER. - 2214-031X. ; 20, s. 14-24
  • Research review (peer-reviewed)abstract
    • Functional restoration after spinal cord injury (SCI) is one of the most challenging tasks in neurological clinical practice. With a view to exploring effective neurorestorative methods in the acute, subacute, and chronic phases of SCI, "Clinical Therapeutic Guidelines of Neurorestoration for Spinal Cord Injury (China Version 2016)" was first proposed in 2016 by the Chinese Association of Neurorestoratology (CANR). Given the rapid advances in this field in recent years, the International Association of Neurorestoratology (IANR) and CANR formed and approved the "Clinical Neurorestorative Therapeutic Guidelines for Spinal Cord Injury (IANR/CANR version 2019)". These guidelines mainly introduce restoring damaged neurological structure and functions by varying neurorestorative strategies in acute, subacute, and chronic phases of SCI. These guidelines can provide a neurorestorative therapeutic standard or reference for clinicians and researchers in clinical practice to maximally restore functions of patients with SCI and improve their quality of life. The translational potential of this article: This guideline provided comprehensive management strategies for SCI, which contains the evaluation and diagnosis, pre-hospital first aid, treatments, rehabilitation training, and complications management. Nowadays, amounts of neurorestorative strategies have been demonstrated to be benefit in promoting the functional recovery and improving the quality of life for SCI patients by clinical trials. Also, the positive results of preclinical research provided lots of new neurorestorative strategies for SCI treatment. These promising neurorestorative strategies are worthy of translation in the future and can promote the advancement of SCI treatments.
  •  
3.
  • Muresanu, Dafin F., et al. (author)
  • Diabetes exacerbates brain pathology following a focal blast brain injury : New role of a multimodal drug cerebrolysin and nanomedicine
  • 2020
  • In: Neuropharmacology of Neuroprotection. - : ELSEVIER. - 9780128208137 ; 258, s. 285-367
  • Book chapter (peer-reviewed)abstract
    • Blast brain injury (bBI) is a combination of several forces of pressure, rotation, penetration of sharp objects and chemical exposure causing laceration, perforation and tissue losses in the brain. The bBI is quite prevalent in military personnel during combat operations. However, no suitable therapeutic strategies are available so far to minimize bBI pathology. Combat stress induces profound cardiovascular and endocrine dysfunction leading to psychosomatic disorders including diabetes mellitus (DM). This is still unclear whether brain pathology in bBI could exacerbate in DM. In present review influence of DM on pathophysiology of bBI is discussed based on our own investigations. In addition, treatment with cerebrolysin (a multimodal drug comprising neurotrophic factors and active peptide fragments) or H-290/51 (a chain-breaking antioxidant) using nanowired delivery of for superior neuroprotection on brain pathology in bBI in DM is explored. Our observations are the first to show that pathophysiology of bBI is exacerbated in DM and TiO2-nanowired delivery of cerebrolysin induces profound neuroprotection in bBI in DM, not reported earlier. The clinical significance of our findings with regard to military medicine is discussed.
  •  
4.
  • Niu, Feng, et al. (author)
  • Co-administration of TiO2-nanowired DL-3-n-butylphthalide (DL-NBP) and mesenchymal stem cells enhanced neuroprotection in Parkinson's disease exacerbated by concussive head injury
  • 2020
  • In: Neuropharmacology of Neuroprotection. - : ELSEVIER. - 9780128208137 ; , s. 101-155
  • Book chapter (peer-reviewed)abstract
    • DL-3-n-butylphthalide (DL-NBP) is a powerful antioxidant compound with profound neuroprotective effects in stroke and brain injury. However, its role in Parkinson's disease (PD) is not well known. Traumatic brain injury (TBI) is one of the key factors in precipitating PD like symptoms in civilians and particularly in military personnel. Thus, it would be interesting to explore the possible neuroprotective effects of NBP in PD following concussive head injury (CHI). In this chapter effect of nanowired delivery of NBP together with mesenchymal stem cells (MSCs) in PD with CHI is discussed based on our own investigations. It appears that CHI exacerbates PD pathophysiology in terms of p-tau, alpha-synuclein (ASNC) levels in the cerebrospinal fluid (CSF) and the loss of TH immunoreactivity in substantia niagra pars compacta (SNpc) and striatum (STr) along with dopamine (DA), dopamine decarboxylase (DOPAC). And homovanillic acid (HVA). Our observations are the first to show that a combination of NBP with MSCs when delivered using nanowired technology induces superior neuroprotective effects in PD brain pathology exacerbated by CHI, not reported earlier.
  •  
5.
  • Niu, Feng, et al. (author)
  • Nanodelivery of oxiracetam enhances memory, functional recovery and induces neuroprotection following concussive head injury
  • 2021
  • In: Progress in Brain Research. - Amsterdam : Elsevier. - 0079-6123 .- 1875-7855. ; 265, s. 139-230, s. 139-230
  • Journal article (peer-reviewed)abstract
    • Military personnel are the most susceptible to concussive head injury (CHI) caused by explosion, blast or missile or blunt head trauma. Mild to moderate CHI could induce lifetime functional and cognitive disturbances causing significant decrease in quality of life. Severe CHI leads to instant death and lifetime paralysis. Thus, further exploration of novel therapeutic agents or new features of known pharmacological agents are needed to enhance quality of life of CHI victims.Previous reports from our laboratory showed that mild CHI induced by weight drop technique causing an impact of 0.224 N results in profound progressive functional deficit, memory impairment and brain pathology from 5 h after trauma that continued over several weeks of injury.In this investigation we report that TiO2 nanowired delivery of oxiracetam (50 mg/kg, i.p.) daily for 5 days after CHI resulted in significant improvement of functional deficit on the 8th day. This was observed using Rota Rod treadmill, memory improvement assessed by the time spent in finding hidden platform under water. The motor function improvement is seen in oxiracetam treated CHI group by placing forepaw on an inclined mesh walking and foot print analysis for stride length and distance between hind feet. TiO2-nanowired oxiracetam also induced marked improvements in the cerebral blood flow, reduction in the BBB breakdown and edema formation as well as neuroprotection of neuronal, glial and myelin damages caused by CHI at light and electron microscopy on the 7th day after 5 days TiO2 oxiracetam treatment. Adverse biochemical events such as upregulation of CSF nitrite and nitrate, IL-6, TNF-a and p-Tau are also reduced significantly in oxiracetam treated CHI group. On the other hand post treatment of 100 mg/kg dose of normal oxiracetam in identical conditions after CHI is needed to show slight but significant neuroprotection together with mild recovery of memory function and functional deficits on the 8th day. These observations are the first to point out that nanowired delivery of oxiracetam has superior neuroprotective ability in CHI. These results indicate a promising clinical future of TiO2 oxiracetam in treating CHI patients for better quality of life and neurorehabilitation, not reported earlier.
  •  
6.
  • Sahib, Seaab, et al. (author)
  • Cerebrolysin enhances spinal cord conduction and reduces blood-spinal cord barrier breakdown, edema formation, immediate early gene expression and cord pathology after injury
  • 2020. - 1
  • In: Neuropharmacology of Neuroprotection. - Amsterdam : Elsevier. - 9780128208137 - 9780128208144 ; , s. 397-438
  • Book chapter (peer-reviewed)abstract
    • Spinal cord evoked potentials (SCEP) are good indicators of spinal cord function in health and disease. Disturbances in SCEP amplitudes and latencies during spinal cord monitoring predict spinal cord pathology following trauma. Treatment with neuroprotective agents preserves SCEP and reduces cord pathology after injury. The possibility that cerebrolysin, a balanced composition of neurotrophic factors improves spinal cord conduction, attenuates blood-spinal cord barrier (BSCB) disruption, edema formation, and cord pathology was examined in spinal cord injury (SCI). SCEP is recorded from epidural space over rat spinal cord T9 and T12 segments after peripheral nerves stimulation. SCEP consists of a small positive peak (MPP), followed by a prominent negative peak (MNP) that is stable before SCI. A longitudinal incision (2mm deep and 5mm long) into the right dorsal horn (T10 and T11 segments) resulted in an immediate long-lasting depression of the rostral MNP with an increase in the latencies. Pretreatment with either cerebrolysin (CBL 5mL/kg, i.v. 30min before) alone or TiO2 nanowired delivery of cerebrolysin (NWCBL 2.5mL/kg, i.v.) prevented the loss of MNP amplitude and even enhanced further from the pre-injury level after SCI without affecting latencies. At 5h, SCI induced edema, BSCB breakdown, and cell injuries were significantly reduced by CBL and NWCBL pretreatment. Interestingly this effect on SCEP and cord pathology was still prominent when the NWCBL was delivered 2min after SCI. Moreover, expressions of c-fos and c-jun genes that are prominent at 5h in untreated SCI are also considerably reduced by CBL and NWCBL treatment. These results are the first to show that CBL and NWCBL enhanced SCEP activity and thwarted the development of cord pathology after SCI. Furthermore, NWCBL in low doses has superior neuroprotective effects on SCEP and cord pathology, not reported earlier. The functional significance and future clinical potential of CBL and NWCBL in SCI are discussed.
  •  
7.
  • Sahib, Seaab, et al. (author)
  • Nanodelivery of traditional Chinese Gingko Biloba extract EGb-761 and bilobalide BN-52021 induces superior neuroprotective effects on pathophysiology of heat stroke
  • 2021
  • In: Progress in Brain Research. - : Elsevier. - 0079-6123 .- 1875-7855. ; 265, s. 249-315, s. 249-315
  • Journal article (peer-reviewed)abstract
    • Military personnel often exposed to high summer heat are vulnerable to heat stroke (HS) resulting in abnormal brain function and mental anomalies. There are reasons to believe that leakage of the blood-brain barrier (BBB) due to hyperthermia and development of brain edema could result in brain pathology. Thus, exploration of suitable therapeutic strategies is needed to induce neuroprotection in HS. Extracts of Gingko Biloba (EGb-761) is traditionally used in a variety of mental disorders in Chinese traditional medicine since ages. In this chapter, effects of TiO2 nanowired EGb-761 and BN-52021 delivery to treat brain pathologies in HS is discussed based on our own investigations. We observed that TiO2 nanowired delivery of EGb-761 or TiO2 BN-52021 is able to attenuate more that 80% reduction in the brain pathology in HS as compared to conventional drug delivery. The functional outcome after HS is also significantly improved by nanowired delivery of EGb-761 and BN-52021. These observations are the first to suggest that nanowired delivery of EGb-761 and BN-52021 has superior therapeutic effects in HS not reported earlier. The clinical significance in relation to the military medicine is discussed.
  •  
8.
  • Sharma, Aruna, et al. (author)
  • Concussive head injury exacerbates neuropathology of sleep deprivation : Superior neuroprotection by co-administration of TiO2-nanowired cerebrolysin, alpha-melanocyte-stimulating hormone, and mesenchymal stem cells
  • 2020
  • In: Neuropharmacology of Neuroprotection. - : ELSEVIER. - 9780128208137 ; , s. 1-77
  • Book chapter (peer-reviewed)abstract
    • Sleep deprivation (SD) is common in military personnel engaged in combat operations leading to brain dysfunction. Military personnel during acute or chronic SD often prone to traumatic brain injury (TBI) indicating the possibility of further exacerbating brain pathology. Several lines of evidence suggest that in both TBI and SD alpha-melanocyte-stimulating hormone (alpha-MSH) and brain-derived neurotrophic factor (BDNF) levels decreases in plasma and brain. Thus, a possibility exists that exogenous supplement of alpha-MSH and/or BDNF induces neuroprotection in SD compounded with TBI. In addition, mesenchymal stem cells (MSCs) are very portent in inducing neuroprotection in TBI. We examined the effects of concussive head injury (CHI) in SD on brain pathology. Furthermore, possible neuroprotective effects of alpha-MSH, MSCs and neurotrophic factors treatment were explored in a rat model of SD and CHI. Rats subjected to 48h SD with CHI exhibited higher leakage of BBB to Evans blue and radioiodine compared to identical SD or CHI alone. Brain pathology was also exacerbated in SD with CHI group as compared to SD or CHI alone together with a significant reduction in alpha-MSH and BDNF levels in plasma and brain and enhanced level of tumor necrosis factor-alpha (TNF-alpha). Exogenous administration of alpha-MSH (250 mu g/kg) together with MSCs (1 x 10(6)) and cerebrolysin (a balanced composition of several neurotrophic factors and active peptide fragments) (5mL/kg) significantly induced neuroprotection in SD with CHI. Interestingly, TiO2 nanowired delivery of alpha-MSH (100 mu g), MSCs, and cerebrolysin (2.5mL/kg) induced enhanced neuroprotection with higher levels of alpha-MSH and BDNF and decreased the TNF-alpha in SD with CHI. These observations are the first to show that TiO2 nanowired administration of alpha-MSH, MSCs and cerebrolysin induces superior neuroprotection following SD in CHI, not reported earlier. The clinical significance of our findings in light of the current literature is discussed.
  •  
9.
  • Sharma, Aruna, et al. (author)
  • Histamine H3 and H4 receptors modulate Parkinson's disease induced brain pathology : Neuroprotective effects of nanowired BF-2649 and clobenpropit with anti-histamine-antibody therapy
  • 2021
  • In: Brain protection strategies and nanomedicine. - : Elsevier BV. - 9780323989275 ; 266, s. 1-73
  • Book chapter (peer-reviewed)abstract
    • Military personnel deployed in combat operations are highly prone to develop Parkinson's disease (PD) in later lives. PD largely involves dopaminergic pathways with hallmarks of increased alpha synuclein (ASNC), and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) precipitating brain pathology. However, increased histaminergic nerve fibers in substantia nigra pars Compacta (SNpc), striatum (STr) and caudate putamen (CP) associated with upregulation of Histamine H3 receptors and downregulation of H4 receptors in human cases of PD is observed in postmortem cases. These findings indicate that modulation of histamine H3 and H4 receptors and/or histaminergic transmission may induce neuroprotection in PD induced brain pathology. In this review effects of a potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist, in association with monoclonal anti-histamine antibodies (AHmAb) in PD brain pathology is discussed based on our own observations. Our investigation shows that chronic administration of conventional or TiO2 nanowired BF 2649 (1 mg/kg, i.p.) or CLBPT (1 mg/kg, i.p.) once daily for 1 week together with nanowired delivery of HAmAb (25 mu L) significantly thwarted ASNC and p-tau levels in the SNpC and STr and reduced PD induced brain pathology. These observations are the first to show the involvement of histamine receptors in PD and opens new avenues for the development of novel drug strategies in clinical strategies for PD, not reported earlier.
  •  
10.
  • Sharma, Aruna, et al. (author)
  • Mild traumatic brain injury exacerbates Parkinson's disease induced hemeoxygenase-2 expression and brain pathology : Neuroprotective effects of co-administration of TiO2 nanowired mesenchymal stem cells and cerebrolysin
  • 2020
  • In: Neuropharmacology of Neuroprotection. - : ELSEVIER. - 9780128208137 ; , s. 157-231
  • Book chapter (peer-reviewed)abstract
    • Mild traumatic brain injury (mTBI) is one of the leading predisposing factors in the development of Parkinson's disease (PD). Mild or moderate TBI induces rapid production of tau protein and alpha synuclein (ASNC) in the cerebrospinal fluid (CSF) and in several brain areas. Enhanced tau-phosphorylation and ASNC alters the molecular machinery of the brain leading to PD pathology. Recent evidences show upregulation of constitutive isoform of hemeoxygenase (HO-2) in PD patients that correlates well with the brain pathology. mTBI alone induces profound upregulation of HO-2 immunoreactivity. Thus, it would be interesting to explore whether mTBI exacerbates PD pathology in relation to tau, ASNC and HO-2 expression. In addition, whether neurotrophic factors and stem cells known to reduce brain pathology in TBI could induce neuroprotection in PD following mTBI. In this review role of mesenchymal stem cells (MSCs) and cerebrolysin (CBL), a well-balanced composition of several neurotrophic factors and active peptide fragments using nanowired delivery in PD following mTBI is discussed based on our own investigation. Our results show that mTBI induces concussion exacerbates PD pathology and nanowired delivery of MSCs and CBL induces superior neuroprotection. This could be due to reduction in tau, ASNC and HO-2 expression in PD following mTBI, not reported earlier. The functional significance of our findings in relation to clinical strategies is discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view