SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Murgia S.) srt2:(2020-2024)"

Sökning: WFRF:(Murgia S.) > (2020-2024)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aragam, KG, et al. (författare)
  • Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants
  • 2022
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 54:12, s. 1803-1815
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of genetic loci associated with complex diseases has outpaced the elucidation of mechanisms of disease pathogenesis. Here we conducted a genome-wide association study (GWAS) for coronary artery disease (CAD) comprising 181,522 cases among 1,165,690 participants of predominantly European ancestry. We detected 241 associations, including 30 new loci. Cross-ancestry meta-analysis with a Japanese GWAS yielded 38 additional new loci. We prioritized likely causal variants using functionally informed fine-mapping, yielding 42 associations with less than five variants in the 95% credible set. Similarity-based clustering suggested roles for early developmental processes, cell cycle signaling and vascular cell migration and proliferation in the pathogenesis of CAD. We prioritized 220 candidate causal genes, combining eight complementary approaches, including 123 supported by three or more approaches. Using CRISPR–Cas9, we experimentally validated the effect of an enhancer in MYO9B, which appears to mediate CAD risk by regulating vascular cell motility. Our analysis identifies and systematically characterizes >250 risk loci for CAD to inform experimental interrogation of putative causal mechanisms for CAD.
  •  
2.
  • Aragam, KG, et al. (författare)
  • Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants
  • 2022
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 54:12, s. 1803-1815
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of genetic loci associated with complex diseases has outpaced the elucidation of mechanisms of disease pathogenesis. Here we conducted a genome-wide association study (GWAS) for coronary artery disease (CAD) comprising 181,522 cases among 1,165,690 participants of predominantly European ancestry. We detected 241 associations, including 30 new loci. Cross-ancestry meta-analysis with a Japanese GWAS yielded 38 additional new loci. We prioritized likely causal variants using functionally informed fine-mapping, yielding 42 associations with less than five variants in the 95% credible set. Similarity-based clustering suggested roles for early developmental processes, cell cycle signaling and vascular cell migration and proliferation in the pathogenesis of CAD. We prioritized 220 candidate causal genes, combining eight complementary approaches, including 123 supported by three or more approaches. Using CRISPR–Cas9, we experimentally validated the effect of an enhancer in MYO9B, which appears to mediate CAD risk by regulating vascular cell motility. Our analysis identifies and systematically characterizes >250 risk loci for CAD to inform experimental interrogation of putative causal mechanisms for CAD.
  •  
3.
  •  
4.
  • Saba, Luca, et al. (författare)
  • Carotid plaque-RADS : a novel stroke risk classification system
  • 2024
  • Ingår i: JACC Cardiovascular Imaging. - : Elsevier. - 1936-878X .- 1876-7591. ; 17:1, s. 62-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Carotid artery atherosclerosis is highly prevalent in the general population and is a well-established risk factor for acute ischemic stroke. Although the morphological characteristics of vulnerable plaques are well recognized, there is a lack of consensus in reporting and interpreting carotid plaque features.Objectives: The aim of this document is to establish a consistent and comprehensive approach for imaging and reporting carotid plaque by introducing the Plaque–Reporting and Data System (RADS) score.Methods: A panel of experts recognized the necessity to develop a classification system for carotid plaque and its defining characteristics. Using a multimodality analysis approach, the Plaque-RADS categories were established through consensus, drawing on existing published reports.Results: The authors present a universal classification that is applicable to both researchers and clinicians. The Plaque-RADS score offers a morphological assessment in addition to the prevailing quantitative parameter of “stenosis.” The Plaque-RADS score spans from grade 1 (indicating complete absence of plaque) to grade 4 (representing complicated plaque). Accompanying visual examples are included to facilitate a clear understanding of the Plaque-RADS categories.Conclusions: Plaque-RADS is a standardized and reliable system of reporting carotid plaque composition and morphology via different imaging modalities, such as ultrasound, computed tomography, and magnetic resonance imaging. This scoring system has the potential to help in the precise identification of patients who may benefit from exclusive medical intervention and those who require alternative treatments, thereby enhancing patient care. A standardized lexicon and structured reporting promise to enhance communication between radiologists, referring clinicians, and scientists.
  •  
5.
  • Sanchez, Elena H., et al. (författare)
  • Simultaneous Individual and Dipolar Collective Properties in Binary Assemblies of Magnetic Nanoparticles
  • 2020
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 1520-5002 .- 0897-4756. ; 32:3, s. 969-981
  • Tidskriftsartikel (refereegranskat)abstract
    • Applications based on aggregates of magnetic nanoparticles are becoming increasingly widespread, ranging from hyperthermia to magnetic recording. However, although some uses require collective behavior, others need a more individual-like response, the conditions leading to either of these behaviors are still poorly understood. Here, we use nanoscale-uniform binary random dense mixtures with different proportions of oxide magnetic nanoparticles with low/high anisotropy as a valuable tool to explore the crossover from individual to collective behavior. Two different anisotropy scenarios have been studied in two series of binary compacts: M1, comprising maghemite (gamma-Fe2O3) nanoparticles of different sizes (9.0 nm/11.5 nm) with barely a factor of 2 between their anisotropy energies, and M2, mixing equally sized pure maghemite (low-anisotropy) and Co-doped maghemite (high-anisotropy) nanoparticles with a large difference in anisotropy energy (ratio > 8). Interestingly, while the M1 series exhibits collective behavior typical of strongly coupled dipolar systems, the M2 series presents a more complex scenario where different magnetic properties resemble either "individual-like" or "collective", crucially emphasizing that the collective character must be ascribed to specific properties and not to the system as a whole. The strong differences between the two series offer new insight (systematically ratified by simulations) into the subtle interplay between dipolar interactions, local anisotropy and sample heterogeneity to determine the behavior of dense assemblies of magnetic nanoparticles.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy