SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mustill Alexander J.) srt2:(2018)"

Sökning: WFRF:(Mustill Alexander J.) > (2018)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eriksson, Linn E.J., et al. (författare)
  • Circularizing Planet Nine through dynamical friction with an extended, cold planetesimal belt
  • 2018
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 475:4, s. 4609-4616
  • Tidskriftsartikel (refereegranskat)abstract
    • Unexpected clustering in the orbital elements of minor bodies beyond the Kuiper belt has led to speculations that our Solar system actually hosts nine planets, the eight established plus a hypothetical 'Planet Nine'. Several recent studies have shown that a planet with a mass of about 10 Earth masses on a distant eccentric orbit with perihelion far beyond the Kuiper belt could create and maintain this clustering. The evolutionary path resulting in an orbit such as the one suggested for Planet Nine is nevertheless not easily explained. Here, we investigate whether a planet scattered away from the giant-planet region could be lifted to an orbit similar to the one suggested for Planet Nine through dynamical friction with a cold, distant planetesimal belt. Recent simulations of planetesimal formation via the streaming instability suggest that planetesimals can readily form beyond 100 au. We explore this circularisation by dynamical friction with a set of numerical simulations. We find that a planet that is scattered from the region close to Neptune on to an eccentric orbit has a 20-30 per cent chance of obtaining an orbit similar to that of Planet Nine after 4.6 Gyr. Our simulations also result in strong or partial clustering of the planetesimals; however, whether or not this clustering is observable depends on the location of the inner edge of the planetesimal belt. If the inner edge is located at 200 au, the degree of clustering amongst observable objects is significant.
  •  
2.
  • Izquierdo, Paula, et al. (författare)
  • Fast spectrophotometry of WD 1145+017
  • 2018
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 481:1, s. 703-714
  • Tidskriftsartikel (refereegranskat)abstract
    • WD 1145+017 is currently the only white dwarf known to exhibit periodic transits of planetary debris as well as absorption lines from circumstellar gas. We present the first simultaneous fast optical spectrophotometry and broad-band photometry of the system, obtained with the Gran Telescopio Canarias (GTC) and the Liverpool Telescope, respectively. The observations spanned 5.5 h, somewhat longer than the 4.5-h orbital period of the debris. Dividing the GTC spectrophotometry into five wavelength bands reveals no significant colour differences, confirming grey transits in the optical. We argue that absorption by an optically thick structure is a plausible alternative explanation for the achromatic nature of the transits that can allow the presence of small-sized (~µm) particles. The longest (87 min) and deepest (50 per cent attenuation) transit recorded in our data exhibits a complex structure around minimum light that can be well modelled by multiple overlapping dust clouds. The strongest circumstellar absorption line, Fe II λ5169, significantly weakens during this transit, with its equivalent width reducing from a mean out-of-transit value of 2 to 1 Å in-transit, supporting spatial correlation between the circumstellar gas and dust. Finally, we made use of the Gaia Data Release 2 and archival photometry to determine the white dwarf parameters. Adopting a helium-dominated atmosphere containing traces of hydrogen and metals, and a reddening E(B - V) = 0.01 we find T_eff=15 020 ± 520 K, log g = 8.07 ± 0.07, corresponding to M_WD=0.63± 0.05 M☉ and a cooling age of 224 ± 30 Myr.
  •  
3.
  • Mustill, Alexander J, et al. (författare)
  • The dynamical evolution of transiting planetary systems including a realistic collision prescription
  • 2018
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 478:3, s. 2896-2908
  • Tidskriftsartikel (refereegranskat)abstract
    • Planet–planet collisions are a common outcome of instability in systems of transiting planets close to the star, as well as occurring during in-situ formation of such planets from embryos. Previous N-body studies of instability amongst transiting planets have assumed that collisions result in perfect merging. Here, we explore the effects of implementing a more realistic collision prescription on the outcomes of instability and in-situ formation at orbital radii of a few tenths of an au. There is a strong effect on the outcome of the growth of planetary embryos, so long as the debris thrown off in collisions is rapidly removed from the system (which happens by collisional processing to dust, and then removal by radiation forces) and embryos are small (<0.1 M⊕). If this is the case, then systems form fewer detectable (≥1 M⊕) planets than systems evolved under the assumption of perfect merging in collisions. This provides some contribution to the ‘Kepler dichotomy’: the observed overabundance of single-planet systems. The effects of changing the collision prescription on unstable mature systems of super-Earths are less pronounced. Perfect mergers only account for a minority of collision outcomes in such systems, but most collisions resulting in mass loss are grazing impacts in which only a few per cent of mass is lost. As a result, there is little impact on the final masses and multiplicities of the systems after instability when compared to systems evolved under the assumption that collisions always result in perfect merging.
  •  
4.
  • Mustill, Alexander J, et al. (författare)
  • Twenty years of photometric microlensing events predicted by Gaia DR2 : Potential planet-hosting lenses within 100 pc
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Gaia Data Release 2 (DR2) offers unparalleled precision on stars’ parallaxes and proper motions. This allows the prediction of microlensing events for which the lens stars (and any planets they possess) are nearby and may be well studied and characterised. Aims. We identify a number of potential microlensing events that will occur before the year 2035.5, 20 years from the Gaia DR2 reference epoch. Methods. We query Gaia DR2 for potential lenses within 100 pc, extract parallaxes and proper motions of the lenses and background sources, and identify potential lensing events. We estimate the lens masses from Priam effective temperatures and use these to calculate peak magnifications and the size of the Einstein radii relative to the lens stars’ habitable zones. Results. We identify seven future events with a probability >10% of an alignment within one Einstein radius. Of particular interest is DR2 5918299904067162240 (WISE J175839.20–583931.6), magnitude G = 14.9, which will lens a G = 13.9 background star in early 2030, with a median 23% net magnification. Other pairs are typically fainter, hampering characterisation of the lens (if the lens is faint) or the ability to accurately measure the magnification (if the source is much fainter than the lens). Of timely interest is DR2 4116504399886241792 (2MASS J17392440–2327071), which will lens a background star in July 2020, albeit with weak net magnification (0.03%). Median magnifications for the other five high-probability events range from 0.3% to 5.3%. The Einstein radii for these lenses are one to ten times the radius of the habitable zone, allowing these lensing events to pick out cold planets around the ice line, and filling a gap between transit and current microlensing detections of planets around very low-mass stars. Conclusions. We provide a catalogue of the predicted events to aid future characterisation efforts. Current limitations include a lack of many high-proper-motion objects in Gaia DR2 and often large uncertainties on the proper motions of the background sources (or only two-parameter solutions). Both of these deficiencies will be rectified with Gaia DR3 in 2020. Further characterisation of the lenses is also warranted to better constrain their masses and predict the photometric magnifications.
  •  
5.
  • Mustill, Alexander J., et al. (författare)
  • Unstable low-mass planetary systems as drivers of white dwarf pollution
  • 2018
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 476, s. 3939-3955
  • Tidskriftsartikel (refereegranskat)abstract
    • At least 25 percent of white dwarfs show atmospheric pollution by metals, sometimes accompanied by detectable circumstellar dust/gas discs or (in the case of WD 1145+017) transiting disintegrating asteroids. Delivery of planetesimals to the white dwarf by orbiting planets is a leading candidate to explain these phenomena. Here, we study systems of planets and planetesimals undergoing planet–planet scattering triggered by the star's post-main-sequence mass loss, and test whether this can maintain high rates of delivery over the several Gyr that they are observed. We find that low-mass planets (Earth to Neptune mass) are efficient deliverers of material and can maintain the delivery for Gyr. Unstable low-mass planetary systems reproduce the observed delayed onset of significant accretion, as well as the slow decay in accretion rates at late times. Higher-mass planets are less efficient, and the delivery only lasts a relatively brief time before the planetesimal populations are cleared. The orbital inclinations of bodies as they cross the white dwarf's Roche limit are roughly isotropic, implying that significant collisional interactions of asteroids, debris streams and discs can be expected. If planet–planet scattering is indeed responsible for the pollution of white dwarfs, many such objects, and their main-sequence progenitors, can be expected to host (currently undetectable) super-Earth planets on orbits of several au and beyond.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy