SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nàgy Péter) srt2:(2005-2009)"

Sökning: WFRF:(Nàgy Péter) > (2005-2009)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adewumi, Oluseun, et al. (författare)
  • Characterization of human embryonic stem cell lines by the International Stem Cell Initiative
  • 2007
  • Ingår i: Nature Biotechnology. - : Springer Science and Business Media LLC. - 1087-0156 .- 1546-1696. ; 25:7, s. 803-816
  • Tidskriftsartikel (refereegranskat)abstract
    • The International Stem Cell Initiative characterized 59 human embryonic stem cell lines from 17 laboratories worldwide. Despite diverse genotypes and different techniques used for derivation and maintenance, all lines exhibited similar expression patterns for several markers of human embryonic stem cells. They expressed the glycolipid antigens SSEA3 and SSEA4, the keratan sulfate antigens TRA-1-60, TRA-1-81, GCTM2 and GCT343, and the protein antigens CD9, Thy1 (also known as CD90), tissue- nonspecific alkaline phosphatase and class 1 HLA, as well as the strongly developmentally regulated genes NANOG, POU5F1 (formerly known as OCT4), TDGF1, DNMT3B, GABRB3 and GDF3. Nevertheless, the lines were not identical: differences in expression of several lineage markers were evident, and several imprinted genes showed generally similar allele-specific expression patterns, but some gene-dependent variation was observed. Also, some female lines expressed readily detectable levels of XIST whereas others did not. No significant contamination of the lines with mycoplasma, bacteria or cytopathic viruses was detected.
  •  
2.
  • Gram, Dorte X., et al. (författare)
  • Capsaicin-sensitive sensory fibers in the islets of Langerhans contribute to defective insulin secretion in Zucker diabetic rat, an animal model for some aspects of human type 2 diabetes
  • 2007
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 25:1, s. 213-223
  • Tidskriftsartikel (refereegranskat)abstract
    • The system that regulates insulin secretion from beta-cells in the islet of Langerhans has a capsaicin-sensitive inhibitory component. As calcitonin gene-related peptide (CGRP)-expressing primary sensory fibers innervate the islets, and a major proportion of the CGRP-containing primary sensory neurons is sensitive to capsaicin, the islet-innervating sensory fibers may represent the capsaicin-sensitive inhibitory component. Here, we examined the expression of the capsaicin receptor, vanilloid type 1 transient receptor potential receptor (TRPV1) in CGRP-expressing fibers in the pancreatic islets, and the effect of selective elimination of capsaicin-sensitive primary afferents on the decline of glucose homeostasis and insulin secretion in Zucker diabetic fatty (ZDF) rats, which are used to study various aspects of human type 2 diabetes mellitus. We found that CGRP-expressing fibers in the pancreatic islets also express TRPV1. Furthermore, we also found that systemic capsaicin application before the development of hyperglycemia prevents the increase of fasting, non-fasting, and mean 24-h plasma glucose levels, and the deterioration of glucose tolerance assessed on the fifth week following the injection. These effects were accompanied by enhanced insulin secretion and a virtually complete loss of CGRP- and TRPV1-coexpressing islet-innervating fibers. These data indicate that CGRP-containing fibers in the islets are capsaicin sensitive, and that elimination of these fibers contributes to the prevention of the deterioration of glucose homeostasis through increased insulin secretion in ZDF rats. Based on these data we propose that the activity of islet-innervating capsaicin-sensitive fibers may have a role in the development of reduced insulin secretion in human type 2 diabetes mellitus.
  •  
3.
  •  
4.
  • Kevei, Eva, et al. (författare)
  • Forward genetic analysis of the circadian clock separates the multiple functions of ZEITLUPE.
  • 2006
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 140:3, s. 933-45
  • Tidskriftsartikel (refereegranskat)abstract
    • The circadian system of Arabidopsis (Arabidopsis thaliana) includes feedback loops of gene regulation that generate 24-h oscillations. Components of these loops remain to be identified; none of the known components is completely understood, including ZEITLUPE (ZTL), a gene implicated in regulated protein degradation. ztl mutations affect both circadian and developmental responses to red light, possibly through ZTL interaction with PHYTOCHROME B (PHYB). We conducted a large-scale genetic screen that identified additional clock-affecting loci. Other mutants recovered include 11 new ztl alleles encompassing mutations in each of the ZTL protein domains. Each mutation lengthened the circadian period, even in dark-grown seedlings entrained to temperature cycles. A mutation of the LIGHT, OXYGEN, VOLTAGE (LOV)/Period-ARNT-Sim (PAS) domain was unique in retaining wild-type responses to red light both for the circadian period and for control of hypocotyl elongation. This uncoupling of ztl phenotypes indicates that interactions of ZTL protein with multiple factors must be disrupted to generate the full ztl mutant phenotype. Protein interaction assays showed that the ztl mutant phenotypes were not fully explained by impaired interactions with previously described partner proteins Arabidopsis S-phase kinase-related protein 1, TIMING OF CAB EXPRESSION 1, and PHYB. Interaction with PHYB was unaffected by mutation of any ZTL domain. Mutation of the kelch repeat domain affected protein binding at both the LOV/PAS and the F-box domains, indicating that interaction among ZTL domains leads to the strong phenotypes of kelch mutations. Forward genetics continues to provide insight regarding both known and newly discovered components of the circadian system, although current approaches have saturated mutations at some loci.
  •  
5.
  • Månsson, Lisa E., et al. (författare)
  • Role of the Lipopolysaccharide-CD14 Complex for the Activity of Hemolysin from Uropathogenic Escherichia coli
  • 2007
  • Ingår i: Infect. Immun.. ; 75:2, s. 997-1004
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial pathogens produce a variety of exotoxins, which often become associated with the bacterial outer membrane component lipopolysaccharide (LPS) during their secretion. LPS is a potent proinflammatory mediator; however, it is not known whether LPS contributes to cell signaling induced by those microbial components to which it is attached. This is partly due to the common view that LPS present in bacterial component preparations is an experimental artifact. The Escherichia coli exotoxin hemolysin (Hly) is a known inducer of proinflammatory signaling in epithelial cells, and the signal transduction pathway involves fluctuation of the intracellular-Ca2+ concentration. Since LPS is known to interact with Hly, we investigated whether it is required as a cofactor for the activity of Hly. We found that the LPS/Hly complex exploits the CD14/LPS-binding protein recognition system to bring Hly to the cell membrane, where intracellular-Ca2+ signaling is initiated via specific activation of the small GTPase RhoA. Hly-induced Ca2+ signaling was found to occur independently of the LPS receptor TLR4, suggesting that the role of LPS/CD14 is to deliver Hly to the cell membrane. In contrast, the cytolytic effect triggered by exposure of cells to high Hly concentrations occurs independently of LPS/CD14. Collectively, our data reveal a novel molecular mechanism for toxin delivery in bacterial pathogenesis, where LPS-associated microbial compounds are targeted to the host cell membrane as a consequence of their association with LPS.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy