SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nagata K) srt2:(2000-2004)"

Sökning: WFRF:(Nagata K) > (2000-2004)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Imanishi, T., et al. (författare)
  • Integrative annotation of 21,037 human genes validated by full-length cDNA clones
  • 2004
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 2:6, s. 856-875
  • Tidskriftsartikel (refereegranskat)abstract
    • The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology.
  •  
2.
  • Nagata, K., et al. (författare)
  • Thermal Conductivity of Molten Al, Si and Ni Measured under Microgravity
  • 2004
  • Ingår i: High Temperature Materials and Processes. - 0334-6455 .- 2191-0324. ; 22:5-6, s. 267-273
  • Tidskriftsartikel (refereegranskat)abstract
    • The thermal conductivities of molten Si, Ni, Al and their alloys have been measured by means of the nonstationary hot wire method under 1 G and microgravity of 10-5 G. A Mo wire was used as the heating wire and coated with alumina by the electrophoretic deposition to prevent an electric current leakage through the melts. Natural convection in the melts was suppressed by measuring the thermal conductivity under the microgravity of 10-5 G using the drop shaft facility of the Japan Microgravity Center. Moreover, the free surface of the melts was covered with a ceramics plate to prevent Marangoni flow. The thermal conductivity of molten Si is about 10 Wm-1K-1, and that of molten Al is 47 Wm -1K-1 at 1260 K. The thermal conductivity of molten Al-30 mass% Si alloy is about 30 Wm-1K-1, and that of molten Ni is 5 Wm-1K-1 at 1773 K. The thermal conductivities of some molten metals are discussed on the deviation from the Wiedemann-Franz law.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy