SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Narita Norio) srt2:(2022)"

Sökning: WFRF:(Narita Norio) > (2022)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fukui, Akihiko, et al. (författare)
  • TOI-2285b: A 1.7 Earth-radius planet near the habitable zone around a nearby M dwarf
  • 2022
  • Ingår i: Publication of the Astronomical Society of Japan. - : Oxford University Press (OUP). - 2053-051X .- 0004-6264. ; 74:1, s. L1-L8
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of TO1-2285b, a sub-Neptune-sized planet transiting a nearby (42 pc) M dwarf with a period of 27.3 d. We identified the transit signal from the Transiting Exoplanet Survey Satellite photometric data, which we confirmed with ground-based photometric observations using the multiband imagers MuSCAT2 and MuSCAT3. Combining these data with other follow-up observations including high-resolution spectroscopy with the Tillinghast Reflector Echelle Spectrograph, high-resolution imaging with the SPeckle Polarimeter, and radial velocity (RV) measurements with the InfraRed Doppler instrument, we find that the planet has a radius of 1.74 +/- 0.08 R-circle plus, a mass of <19.5 M-circle plus + (95% c.I.), and an insolation flux of 1.54 +/- 0.14 times that of the Earth. Although the planet resides just outside the habitable zone for a rocky planet, if the planet harbors an H2O layer under a hydrogen-rich atmosphere, then liquid water could exist on the surface of the H2O layer depending on the planetary mass and water mass fraction. The bright host star in the near-infrared (K-s = 9.0) makes this planet an excellent target for further RV and atmospheric observations to improve our understanding of the composition, formation, and habitability of sub-Neptune-sized planets.
  •  
2.
  • Harakawa, Hiroki, et al. (författare)
  • A super-Earth orbiting near the inner edge of the habitable zone around the M4.5 dwarf Ross 508
  • 2022
  • Ingår i: Publications of the Astronomical Society of Japan. - : Oxford University Press (OUP). - 0004-6264 .- 2053-051X. ; 74:4, s. 904-922
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the near-infrared radial velocity (RV) discovery of a super-Earth planet on a 10.77 d orbit around the M4.5 dwarf Ross 508 (Jmag = 9.1). Using precision RVs from the Subaru Telescope IRD (InfraRed Doppler) instrument, we derive a semi-amplitude of 3.92ms−1⁠, corresponding to a planet with a minimum mass msini=4.00M⊕⁠. We find no evidence of significant signals at the detected period in spectroscopic stellar activity indicators or MEarth photometry. The planet, Ross 508 b, has a semi-major axis of 0.05366au. This gives an orbit-averaged insolation of ≈1.4 times the Earth’s value, placing Ross 508 b near the inner edge of its star’s habitable zone. We have explored the possibility that the planet has a high eccentricity and its host is accompanied by an additional unconfirmed companion on a wide orbit. Our discovery demonstrates that the near-infrared RV search can play a crucial role in finding a low-mass planet around cool M dwarfs like Ross 508.
  •  
3.
  • Hatzes, A., et al. (författare)
  • A Radial Velocity Study of the Planetary System of π Mensae: Improved Planet Parameters for pi Mensae c and a Third Planet on a 125 Day Orbit
  • 2022
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 163:5
  • Tidskriftsartikel (refereegranskat)abstract
    • π Men hosts a transiting planet detected by the Transiting Exoplanet Survey Satellite space mission and an outer planet in a 5.7 yr orbit discovered by radial velocity (RV) surveys. We studied this system using new RV measurements taken with the HARPS spectrograph on ESO's 3.6 m telescope, as well as archival data. We constrain the stellar RV semiamplitude due to the transiting planet, π Men c, as K c = 1.21 ± 0.12 m s-1, resulting in a planet mass of M c = 3.63 ± 0.38 M. A planet radius of R c = 2.145 ± 0.015 R yields a bulk density of ρ c = 2.03 ± 0.22 g cm-3. The precisely determined density of this planet and the brightness of the host star make π Men c an excellent laboratory for internal structure and atmospheric characterization studies. Our HARPS RV measurements also reveal compelling evidence for a third body, π Men d, with a minimum mass M d sin i d = 13.38 ± 1.35 M orbiting with a period of P orb,d = 125 days on an eccentric orbit (e d = 0.22). A simple dynamical analysis indicates that the orbit of π Men d is stable on timescales of at least 20 Myr. Given the mutual inclination between the outer gaseous giant and the inner rocky planet and the presence of a third body at 125 days, π Men is an important planetary system for dynamical and formation studies.
  •  
4.
  • Kabath, Petr, et al. (författare)
  • TOI-2046b, TOI-1181b, and TOI-1516b, three new hot Jupiters from TESS: planets orbiting a young star, a subgiant, and a normal star
  • 2022
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 513:4, s. 5955-5972
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the confirmation and characterization of three hot Jupiters, TOI-118 lb, TOI-1516b, and TOI-2046b, discovered by the "NESS space mission. The reported hot Jupiters have orbital periods between 1.4 and 2.05 d. The masses of the three planets are 1.18 +/- 0.14 Mj, 3.16 +/- 0.12 Mj, and 2.30 +/- 0.28 Mj, for TOI-1181b, TOI-1516b, and TOI-2046b, respectively. The stellar host of TOI-1181b is a F9IV star, whereas TOI-1516b and TOI-2046b orbit F main sequence host stars. The ages of the first two systems are in the range of 2-5 Gyrs. However, TOI-2046 is among the few youngest known planetary systems hosting a hot Jupiter, with an age estimate of 100-400 Myrs. The main instruments used for the radial velocity follow-up of these three planets are located at OndIejov, Tautenburg, and McDonald Observatory, and all three are mounted on 2-3 m aperture telescopes, demonstrating that mid-aperture telescope networks can play a substantial role in the follow-up of gas giants discovered by TESS and in the future by PLATO.
  •  
5.
  • Murgas, F., et al. (författare)
  • HD 20329b: An ultra-short-period planet around a solar-type star found by TESS
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 668
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Ultra-short-period (USP) planets are defined as planets with orbital periods shorter than one day. This type of planets is rare, highly irradiated, and interesting because their formation history is unknown. Aims. We aim to obtain precise mass and radius measurements to confirm the planetary nature of a USP candidate found by the Transiting Exoplanet Survey Satellite (TESS). These parameters can provide insights into the bulk composition of the planet candidate and help to place constraints on its formation history. Methods. We used TESS light curves and HARPS-N spectrograph radial velocity measurements to establish the physical properties of the transiting exoplanet candidate found around the star HD 20329 (TOI-4524). We performed a joint fit of the light curves and radial velocity time series to measure the mass, radius, and orbital parameters of the candidate. Results. We confirm and characterize HD 20329b, a USP planet transiting a solar-type star. The host star (HD 20329, V = 8.74 mag, J = 7.5 mag) is characterized by its G5 spectral type with M∗ = 0.90 ± 0.05 M⊙, R∗ = 1.13 ± 0.02 R⊙, and Teff = 5596 ± 50 K; it is located at a distance d = 63.68 ± 0.29 pc. By jointly fitting the available TESS transit light curves and follow-up radial velocity measurements, we find an orbital period of 0.9261 ± (0.5 ×10-4) days, a planetary radius of 1.72 ± 0.07 R∗, and a mass of 7.42 ± 1.09 M∗, implying a mean density of ρp = 8.06 ± 1.53 g cm-3. HD 20329b joins the ~30 currently known USP planets with radius and Doppler mass measurements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy