SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nef Holger) srt2:(2013)"

Sökning: WFRF:(Nef Holger) > (2013)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Shao, Yangzhen, 1981, et al. (författare)
  • A mouse model reveals an important role for catecholamine-induced lipotoxicity in the pathogenesis of stress-induced cardiomyopathy.
  • 2013
  • Ingår i: European journal of heart failure. - : Wiley. - 1879-0844 .- 1388-9842. ; 15:1, s. 9-22
  • Tidskriftsartikel (refereegranskat)abstract
    • AimStress-induced cardiomyopathy (SIC), also known as takotsubo cardiomyopathy, is an acute cardiac syndrome with substantial morbidity and mortality. The unique hallmark of SIC is extensive ventricular dysfunction (akinesia) involving apical segments with preserved function in basal segments. Adrenergic overstimulation plays an important role in initiating SIC, but the pathomechanisms involved are unknown. We tested the hypothesis that excessive catecholamines cause perturbation of myocardial lipid metabolism and that cardiac lipotoxicity is responsible for the pathogenesis of SIC. METHODS AND RESULTS: A single dose injection of isoprenaline (ISO; 400 mg/kg) induced SIC-like regional akinesia in mice. Oil red O staining revealed severe lipid accumulation in the heart 2 h post-ISO. Both intramyocardial lipid accumulation and cardiac function were normalized within 1 week post-ISO and no significant amount of fibrosis was detected. We found that gene expression of lipid importers and exporters (ApoB lipoprotein) was depressed 2 h post-ISO. These results were confirmed by similar findings in SIC patients and in ISO/patient serum-stressed HL-1 cardiomyocytes. Moreover, overexpression of ApoB in the heart was found to protect against the development of ISO-induced cardiac toxicity and cardiac dysfunction. We also found that ISO-induced intramyocardial lipid accumulation caused electrophysiological disturbance and stunning in ISO/patient serum-stressed HL-1 cardiomyocytes. CONCLUSIONS: The present study demonstrates that lipotoxicity is closely associated with catecholamine-induced myocardial dysfunction, including neurogenic stunning, metabolic stunning, and electrophysiological stunning. Cardiac lipotoxicity may originate from direct inhibition of myocardial ApoB lipoprotein and subsequent decreased lipid export, caused by supraphysiological levels of catecholamines.
  •  
2.
  • Shao, Yangzhen, 1981, et al. (författare)
  • Novel rat model reveals important roles of β-adrenoreceptors in stress-induced cardiomyopathy.
  • 2013
  • Ingår i: International journal of cardiology. - : Elsevier BV. - 1874-1754 .- 0167-5273. ; 168:3, s. 1943-1950
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Stress-induced cardiomyopathy (SIC), also known as Takotsubo cardiomyopathy, is an acute cardiac syndrome with substantial morbidity and mortality. The unique hallmark of SIC is extensive ventricular akinesia involving apical segments with preserved function in basal segments. Adrenergic overstimulation plays an important role in initiating SIC but the pathophysiological pathways and receptors involved are unknown. METHODS: Sprague Dawley rats (~300g) were injected with a single dose of the β-adrenergic agonist isoprenaline (ISO, i.p.) and echocardiography was used to study cardiac function. The akinetic part of the left ventricle was biopsied in six SIC patients. Amount of intracellular lipid and glycogen as well as degree of permanent cardiac damage were assessed by histology. RESULTS: In rats, ISO at doses ≥50mg/kg induced severe SIC-like regional akinesia that completely resolved within seven days. Intracellular lipid content was higher in akinetic, but not in normokinetic myocardium in both SIC patients and rats. β2-receptor blockade or Gi-pathway inhibition was associated with less widespread akinesia and low lipid accumulation but significantly increased acute mortality. CONCLUSIONS: We provide a novel rat model of SIC that supports the hypothesis of circulating catecholamines as initiators of SIC. We propose that the β-adrenoreceptor pathway is important in the setting of severe catecholamine overstimulation and that perturbations of cardiac metabolism occur in SIC.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy