SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Negash W. W.) "

Sökning: WFRF:(Negash W. W.)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tran, K. B., et al. (författare)
  • The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019
  • 2022
  • Ingår i: Lancet. - 0140-6736. ; 400:10352, s. 563-591
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Clark, Andrew G., et al. (författare)
  • Evolution of genes and genomes on the Drosophila phylogeny
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 450:7167, s. 203-218
  • Tidskriftsartikel (refereegranskat)abstract
    • Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
  •  
9.
  •  
10.
  • Gebremariam, Kidan G., et al. (författare)
  • Self-Assembled Monolayer Engineered ZnO Electron Transport Layer to Improve the Photostability of Organic Solar Cells
  • 2024
  • Ingår i: Energy & Fuels. - 1520-5029 .- 0887-0624. ; 38:14, s. 13304-13314
  • Tidskriftsartikel (refereegranskat)abstract
    • The degradation of organic solar cells (OSCs) can occur in any of the layers, underlining the importance of each layer in prolonging their lifetime. To enhance the performance and stability of inverted OSCs (i-OSCs), interfacial modification has been employed. In this context, two self-assembled monolayers (SAMs), namely, octadecanthiol (ODT) and octadecyltrimethoxysilane (OTMS), were utilized to effectively passivate typical surface defects in the ZnO electron transport layer (ETL). The SAM-treated ZnO films were found to be more hydrophobic, which reduced surface defects produced by adsorbed oxygen and hydroxyl groups. Consequently, the power conversion efficiency (PCE) of the i-OSCs comprising an indacenodithieno[3,2-b]thiophene-alt-5,5-di(thiophen-2-yl)-2,2-bithiazole (PIDTT-DTBTz) donor blended with [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM) acceptor increased from 4.20% in pristine ZnO- to 5.01 and 5.37% in ODT- and OTMS-treated ZnO-based devices, respectively. In addition, the photostability of the device substantially improved. Hence, devices based on ZnO treated with ODT and OTMS kept 76 and 89% of their initial PCE, respectively, while pristine ZnO-based devices retained only 66% of the initial PCE after 48 h of irradiation. The improved PCE and extended lifetime of the i-OSCs can be attributed to enhanced charge transfer, the reduction in both bimolecular and trap-assisted recombination processes, and the enhanced interface between the ETL and the active layer. Moreover, it has been observed that the OTMS-treated ZnO ETL-based i-OSC offers better stability and more efficient devices compared to the ODT-treated ZnO ETL-based devices. This can be attributed to the favorable dipole moment generated by the increased electrostatic potential at the anchor group, which promotes improved device performance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy