SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Nenes A.) srt2:(2020-2022)"

Search: WFRF:(Nenes A.) > (2020-2022)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Pasquier, J. T., et al. (author)
  • The Ny-Ålesund Aerosol Cloud Experiment (NASCENT) : Overview and First Results
  • 2022
  • In: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 103:11, s. e2533-E2558
  • Journal article (peer-reviewed)abstract
    • The Arctic is warming at more than twice the rate of the global average. This warming is influenced by clouds, which modulate the solar and terrestrial radiative fluxes and, thus, determine the surface energy budget. However, the interactions among clouds, aerosols, and radiative fluxes in the Arctic are still poorly understood. To address these uncertainties, the Ny-Ålesund Aerosol Cloud Experiment (NASCENT) study was conducted from September 2019 to August 2020 in Ny-Ålesund, Svalbard. The campaign’s primary goal was to elucidate the life cycle of aerosols in the Arctic and to determine how they modulate cloud properties throughout the year. In situ and remote sensing observations were taken on the ground at sea level, at a mountaintop station, and with a tethered balloon system. An overview of the meteorological and the main aerosol seasonality encountered during the NASCENT year is introduced, followed by a presentation of first scientific highlights. In particular, we present new findings on aerosol physicochemical and molecular properties. Further, the role of cloud droplet activation and ice crystal nucleation in the formation and persistence of mixed-phase clouds, and the occurrence of secondary ice processes, are discussed and compared to the representation of cloud processes within the regional Weather Research and Forecasting Model. The paper concludes with research questions that are to be addressed in upcoming NASCENT publications.  
  •  
2.
  • Vignon, É., et al. (author)
  • Challenging and Improving the Simulation of Mid-Level Mixed-Phase Clouds Over the High-Latitude Southern Ocean
  • 2021
  • In: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 126:7
  • Journal article (peer-reviewed)abstract
    • Climate models exhibit major radiative biases over the Southern Ocean owing to a poor representation of mixed-phase clouds. This study uses the remote-sensing dataset from the Measurements of Aerosols, Radiation and Clouds over the Southern Ocean (MARCUS) campaign to assess the ability of the Weather Research and Forecasting (WRF) model to reproduce frontal clouds off Antarctica. It focuses on the modeling of thin mid-level supercooled liquid water layers which precipitate ice. The standard version of WRF produces almost fully glaciated clouds and cannot reproduce cloud top turbulence. Our work demonstrates the importance of adapting the ice nucleation parameterization to the pristine austral atmosphere to reproduce the supercooled liquid layers. Once simulated, droplets significantly impact the cloud radiative effect by increasing downwelling longwave fluxes and decreasing downwelling shortwave fluxes at the surface. The net radiative effect is a warming of snow and ice covered surfaces and a cooling of the ocean. Despite improvements in our simulations, the local turbulent circulation related to cloud-top radiative cooling is not properly reproduced, advocating for the need to develop a parameterization for top-down convection to capture the turbulence-microphysics interplay at cloud top. Plain Language Summary Among the major shortcomings of climate models is a poor representation of clouds over the Southern Ocean. Thanks to new measurements from the Measurements of Aerosols, Radiation and Clouds over the Southern Ocean campaign that took place aboard the Aurora Australia ice breaker, we can now better assess the ability of models to represent clouds off Antarctica. In particular, we focus here on clouds that are mostly composed of ice crystals but that are topped by a thin layer of so-called supercooled liquid droplets that form at temperatures below zero Celsius. While the standard version of the model produces clouds composed only of ice, we show that by adapting the formulation of ice crystal formation to the very pristine atmospheric conditions peculiar to the Southern Ocean it is possible to successfully reproduce thin layers of supercooled liquid droplets observed in mixed-phase clouds. The latter significantly changes how much sunlight these clouds reflect to space, which is critical to understanding the climate. Compared to ice crystals, liquid droplets tend to reflect more solar energy toward space and at the same time, they enhance the cloud infrared emission toward the surface of the Antarctic ice sheet.
  •  
3.
  • Baker, Alex R., et al. (author)
  • Changing atmospheric acidity as a modulator of nutrient deposition and ocean biogeochemistry
  • 2021
  • In: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:28
  • Journal article (peer-reviewed)abstract
    • Anthropogenic emissions to the atmosphere have increased the flux of nutrients, especially nitrogen, to the ocean, but they have also altered the acidity of aerosol, cloud water, and precipitation over much of the marine atmosphere. For nitrogen, acidity-driven changes in chemical speciation result in altered partitioning between the gas and particulate phases that subsequently affect long-range transport. Other important nutrients, notably iron and phosphorus, are affected, because their soluble fractions increase upon exposure to acidic environments during atmospheric transport. These changes affect the magnitude, distribution, and deposition mode of individual nutrients supplied to the ocean, the extent to which nutrient deposition interacts with the sea surface microlayer during its passage into bulk seawater, and the relative abundances of soluble nutrients in atmospheric deposition. Atmospheric acidity change therefore affects ecosystem composition, in addition to overall marine productivity, and these effects will continue to evolve with changing anthropogenic emissions in the future.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view