SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Neubauer G) srt2:(2000-2004)"

Sökning: WFRF:(Neubauer G) > (2000-2004)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Enfors, Sven-Olof, et al. (författare)
  • Physiological responses to mixing in large scale bioreactors
  • 2001
  • Ingår i: Journal of Biotechnology. - 0168-1656 .- 1873-4863. ; 85:2, s. 175-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Escherichia coli fed-batch cultivations at 22 m(3) scale were compared to corresponding laboratory scale processes and cultivations using a scale-down reactor furnished with a high-glucose concentration zone to mimic the conditions in a feed zone of the large bioreactor. Formate accumulated in the large reactor, indicating the existence of oxygen limitation zones. It is suggested that the reduced biomass yield at large scale partly is due to repeated production/reassimilation of acetate from overflow metabolism and mixed acid fermentation products due to local moving zones with oxygen limitation. The conditions that generated mixed-acid fermentation in the scale-down reactor also induced a number of stress responses, monitored by analysis of mRNA of selected stress induced genes. The stress responses were relaxed when the cells returned to the substrate limited and oxygen sufficient compartment of the reactor. Corresponding analysis in the large reactor showed that the concentration of mRNA of four stress induced genes was lowest at the sampling port most distant from the feed zone. It is assumed that repeated induction/relaxation of stress responses in a large bioreactor may contribute to altered physiological properties of the cells grown in large-scale bioreactor. Flow cytometric analysis revealed reduced damage with respect to cytoplasmic membrane potential and integrity in cells grown in the dynamic environments of the large scale reactor and the scale-down reactor.
  •  
3.
  • Gabig-Ciminska, Magdalena, et al. (författare)
  • Electric chips for rapid detection and quantification of nucleic acids
  • 2004
  • Ingår i: Biosensors & bioelectronics. - : Elsevier BV. - 0956-5663 .- 1873-4235. ; 19:6, s. 537-546
  • Tidskriftsartikel (refereegranskat)abstract
    • A silicon chip-based electric detector coupled to bead-based sandwich hybridization (BBSH) is presented as an approach to perform rapid analysis of specific nucleic acids. A microfluidic platform incorporating paramagnetic beads with immobilized capture probes is used for the biorecognition steps. The protocol involves simultaneous sandwich hybridization of a single-stranded nucleic acid target with the capture probe on the beads and with a detection probe in the reaction solution, followed by enzyme labeling of the detection probe, enzymatic reaction, and finally, potentiometric measurement of the enzyme product at the chip surface. Anti-DIG-alkaline phosphatase conjugate was used for the enzyme labeling of the DIG-labeled detection probe. p-Aminophenol phosphate (pAPP) was used as a substrate. The enzyme reaction product, p-aminophenol (pAP), is oxidized at the anode of the chip to quinoneimine that is reduced back to pAP at the cathode. The cycling oxidation and reduction of these compounds result in a current producing a characteristic signal that can be related to the concentration of the analyte. The performance of the different steps in the assay was characterized using in vitro synthesized RNA oligonucleotides and then the instrument was used for analysis of 16S rRNA in Escherichia coli extract. The assay time depends on the sensitivity required. Artificial RNA target and 16S rRNA, in amounts ranging from 10(11) to 10(10) molecules, were assayed within 25 min and 4 h, respectively.
  •  
4.
  • PÀtzold, M., et al. (författare)
  • MaRS : Mars express orbiter radio science
  • 2004
  • Ingår i: European Space Agency, (Special Publication) ESA SP. ; :1240, s. 141-163
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy