SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Neubauer O) srt2:(2020-2023)"

Sökning: WFRF:(Neubauer O) > (2020-2023)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arnaud, C., et al. (författare)
  • Trends in Prevalence and Severity of Pre/Perinatal Cerebral Palsy Among Children Born Preterm From 2004 to 2010: A SCPE Collaboration Study
  • 2021
  • Ingår i: Frontiers in Neurology. - : Frontiers Media SA. - 1664-2295. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: To report on prevalence of cerebral palsy (CP), severity rates, and types of brain lesions in children born preterm 2004 to 2010 by gestational age groups. Methods: Data from 12 population-based registries of the Surveillance of Cerebral Palsy in Europe network were used. Children with CP were eligible if they were born preterm (<37 weeks of gestational age) between 2004 and 2010, and were at least 4 years at time of registration. Severity was assessed using the impairment index. The findings of postnatal brain imaging were classified according to the predominant pathogenic pattern. Prevalences were estimated per 1,000 live births with exact 95% confidence intervals within each stratum of gestational age: <= 27, 28-31, 32-36 weeks. Time trends of both overall prevalence and prevalence of severe CP were investigated using multilevel negative binomial regression models. Results: The sample comprised 2,273 children. 25.8% were born from multiple pregnancies. About 2-thirds had a bilateral spastic CP. 43.5% of children born <= 27 weeks had a high impairment index compared to 37.0 and 38.5% in the two other groups. Overall prevalence significantly decreased (incidence rate ratio per year: 0.96 [0.92-1.00[) in children born 32-36 weeks. We showed a decrease until 2009 for children born 28-31 weeks but an increase in 2010 again, and a steady prevalence (incidence rate ratio per year = 0.97 [0.92-1.02] for those born <= 27 weeks. The prevalence of the most severely affected children with CP revealed a similar but not significant trend to the overall prevalence in the corresponding GA groups. Predominant white matter injuries were more frequent in children born <32 weeks: 81.5% (<= 27 weeks) and 86.4% (28-31 weeks), compared to 63.6% for children born 32-36 weeks. Conclusion: Prevalence of CP in preterm born children continues to decrease in Europe excepting the extremely immature children, with the most severely affected children showing a similar trend.
  •  
2.
  • Bellouin, N., et al. (författare)
  • Bounding Global Aerosol Radiative Forcing of Climate Change
  • 2020
  • Ingår i: Reviews of geophysics. - 8755-1209 .- 1944-9208. ; 58:1
  • Forskningsöversikt (refereegranskat)abstract
    • Aerosols interact with radiation and clouds. Substantial progress made over the past 40 years in observing, understanding, and modeling these processes helped quantify the imbalance in the Earth's radiation budget caused by anthropogenic aerosols, called aerosol radiative forcing, but uncertainties remain large. This review provides a new range of aerosol radiative forcing over the industrial era based on multiple, traceable, and arguable lines of evidence, including modeling approaches, theoretical considerations, and observations. Improved understanding of aerosol absorption and the causes of trends in surface radiative fluxes constrain the forcing from aerosol-radiation interactions. A robust theoretical foundation and convincing evidence constrain the forcing caused by aerosol-driven increases in liquid cloud droplet number concentration. However, the influence of anthropogenic aerosols on cloud liquid water content and cloud fraction is less clear, and the influence on mixed-phase and ice clouds remains poorly constrained. Observed changes in surface temperature and radiative fluxes provide additional constraints. These multiple lines of evidence lead to a 68% confidence interval for the total aerosol effective radiative forcing of -1.6 to -0.6Wm(-2), or -2.0 to -0.4Wm(-2) with a 90% likelihood. Those intervals are of similar width to the last Intergovernmental Panel on Climate Change assessment but shifted toward more negative values. The uncertainty will narrow in the future by continuing to critically combine multiple lines of evidence, especially those addressing industrial-era changes in aerosol sources and aerosol effects on liquid cloud amount and on ice clouds. Plain Language Summary Human activities emit into the atmosphere small liquid and solid particles called aerosols. Those aerosols change the energy budget of the Earth and trigger climate changes, by scattering and absorbing solar and terrestrial radiation and playing important roles in the formation of cloud droplets and ice crystals. But because aerosols are much more varied in their chemical composition and much more heterogeneous in their spatial and temporal distributions than greenhouse gases, their perturbation to the energy budget, called radiative forcing, is much more uncertain. This review uses traceable and arguable lines of evidence, supported by aerosol studies published over the past 40 years, to quantify that uncertainty. It finds that there are two chances out of three that aerosols from human activities have increased scattering and absorption of solar radiation by 14% to 29% and cloud droplet number concentration by 5 to 17% in the period 2005-2015 compared to the year 1850. Those increases exert a radiative forcing that offsets between a fifth and a half of the radiative forcing by greenhouse gases. The degree to which human activities affect natural aerosol levels, and the response of clouds, and especially ice clouds, to aerosol perturbations remain particularly uncertain.
  •  
3.
  • Bansal, Sheel, et al. (författare)
  • Practical Guide to Measuring Wetland Carbon Pools and Fluxes
  • 2023
  • Ingår i: Wetlands (Wilmington, N.C.). - : SPRINGER. - 0277-5212 .- 1943-6246. ; 43:8
  • Forskningsöversikt (refereegranskat)abstract
    • Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We first define each of the major C pools and fluxes and provide rationale for their importance to wetland C dynamics. For each approach, we clarify what component of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such as where and when an approach is typically used, who can conduct the measurements (expertise, training requirements), and how approaches are conducted, including considerations on equipment complexity and costs. Finally, we review key covariates and ancillary measurements that enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions.
  •  
4.
  • Pavlides, Michael, et al. (författare)
  • Liver investigation: Testing marker utility in steatohepatitis (LITMUS): Assessment & validation of imaging modality performance across the NAFLD spectrum in a prospectively recruited cohort study (the LITMUS imaging study): Study protocol
  • 2023
  • Ingår i: Contemporary Clinical Trials. - : ELSEVIER SCIENCE INC. - 1551-7144 .- 1559-2030. ; 134
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-alcoholic fatty liver disease (NAFLD) is the liver manifestation of the metabolic syndrome with global prevalence reaching epidemic levels. Despite the high disease burden in the population only a small proportion of those with NAFLD will develop progressive liver disease, for which there is currently no approved pharmacotherapy. Identifying those who are at risk of progressive NAFLD currently requires a liver biopsy which is problematic. Firstly, liver biopsy is invasive and therefore not appropriate for use in a condition like NAFLD that affects a large proportion of the population. Secondly, biopsy is limited by sampling and observer dependent variability which can lead to misclassification of disease severity. Non-invasive biomarkers are therefore needed to replace liver biopsy in the assessment of NAFLD. Our study addresses this unmet need. The LITMUS Imaging Study is a prospectively recruited multi-centre cohort study evaluating magnetic resonance imaging and elastography, and ultrasound elastography against liver histology as the reference standard. Imaging biomarkers and biopsy are acquired within a 100-day window. The study employs standardised processes for imaging data collection and analysis as well as a real time central monitoring and quality control process for all the data submitted for analysis. It is anticipated that the high-quality data generated from this study will underpin changes in clinical practice for the benefit of people with NAFLD. Study Registration: clinicaltrials.gov: NCT05479721
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy