SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ng Kenney) srt2:(2020)"

Sökning: WFRF:(Ng Kenney) > (2020)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hindy, George, et al. (författare)
  • Genome-Wide Polygenic Score, Clinical Risk Factors, and Long-Term Trajectories of Coronary Artery Disease
  • 2020
  • Ingår i: Arteriosclerosis, Thrombosis, and Vascular Biology. - 1524-4636. ; 40:11, s. 2738-2746
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To determine the relationship of a genome-wide polygenic score for coronary artery disease (GPSCAD) with lifetime trajectories of CAD risk, directly compare its predictive capacity to traditional risk factors, and assess its interplay with the Pooled Cohort Equations (PCE) clinical risk estimator. Approach and Results: We studied GPSCAD in 28 556 middle-aged participants of the Malmö Diet and Cancer Study, of whom 4122 (14.4%) developed CAD over a median follow-up of 21.3 years. A pronounced gradient in lifetime risk of CAD was observed-16% for those in the lowest GPSCAD decile to 48% in the highest. We evaluated the discriminative capacity of the GPSCAD-as assessed by change in the C-statistic from a baseline model including age and sex-among 5685 individuals with PCE risk estimates available. The increment for the GPSCAD (+0.045, P<0.001) was higher than for any of 11 traditional risk factors (range +0.007 to +0.032). Minimal correlation was observed between GPSCAD and 10-year risk defined by the PCE (r=0.03), and addition of GPSCAD improved the C-statistic of the PCE model by 0.026. A significant gradient in lifetime risk was observed for the GPSCAD, even among individuals within a given PCE clinical risk stratum. We replicated key findings-noting strikingly consistent results-in 325 003 participants of the UK Biobank. CONCLUSIONS: GPSCAD-a risk estimator available from birth-stratifies individuals into varying trajectories of clinical risk for CAD. Implementation of GPSCAD may enable identification of high-risk individuals early in life, decades in advance of manifest risk factors or disease.
  •  
2.
  • Li, Ying, et al. (författare)
  • Predicting Type 1 Diabetes Onset using Novel Survival Analysis with Biomarker Ontology
  • 2020
  • Ingår i: AMIA ... Annual Symposium proceedings. AMIA Symposium. - 1942-597X. ; 2020, s. 727-736
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 1 diabetes (T1D) is a chronic autoimmune disease that affects about 1 in 300 children and up to 1 in 100 adults during their life-time1. Improvements in early prediction of T1D onset may help prevent diagnosis for diabetic ketoacidosis, a serious complication often associated with a missed or delayed T1D diagnosis. In addition to genetic factors, progression to T1D is strongly associated with immunologic factors that can be measured during clinical visits. We developed a T1D-specific ontology that captures the dynamic patterns of these biomarkers and used it together with a survival model, RankSvx, proposed in our prior work2. We applied this approach to a T1D dataset harmonized from three birth cohort studies from the United States, Finland, and Sweden. Results show that the dynamic biomarker patterns captured in the proposed ontology are able to improve prediction performance (in concordance index) by 5.3%, 3.3%, 2.8%, and 1.0% over baseline for 3, 6, 9, and 12 month duration windows, respectively.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy