SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nicolo D) srt2:(2020-2023)"

Sökning: WFRF:(Nicolo D) > (2020-2023)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Crialesi-Esposito, Marco, et al. (författare)
  • FluTAS : A GPU-accelerated finite difference code for multiphase flows
  • 2023
  • Ingår i: Computer Physics Communications. - : Elsevier BV. - 0010-4655 .- 1879-2944. ; 284
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the Fluid Transport Accelerated Solver, FluTAS, a scalable GPU code for multiphase flows with thermal effects. The code solves the incompressible Navier-Stokes equation for two-fluid systems, with a direct FFT-based Poisson solver for the pressure equation. The interface between the two fluids is represented with the Volume of Fluid (VoF) method, which is mass conserving and well suited for complex flows thanks to its capacity of handling topological changes. The energy equation is explicitly solved and coupled with the momentum equation through the Boussinesq approximation. The code is conceived in a modular fashion so that different numerical methods can be used independently, the existing routines can be modified, and new ones can be included in a straightforward and sustainable manner. FluTAS is written in modern Fortran and parallelized using hybrid MPI/OpenMP in the CPU-only version and accelerated with OpenACC directives in the GPU implementation. We present different benchmarks to validate the code, and two large-scale simulations of fundamental interest in turbulent multiphase flows: isothermal emulsions in HIT and two-layer Rayleigh-Bénard convection. FluTAS is distributed through a MIT license and arises from a collaborative effort of several scientists, aiming to become a flexible tool to study complex multiphase flows. Program summary: Program Title: : Fluid Transport Accelerated Solver, FluTAS. CPC Library link to program files: https://doi.org/10.17632/tp6k8wky8m.1 Developer's repository link: https://github.com/Multiphysics-Flow-Solvers/FluTAS.git. Licensing provisions: MIT License. Programming language: Fortran 90, parallelized using MPI and slab/pencil decomposition, GPU accelerated using OpenACC directives. External libraries/routines: FFTW, cuFFT. Nature of problem: FluTAS is a GPU-accelerated numerical code tailored to perform interface resolved simulations of incompressible multiphase flows, optionally with heat transfer. The code combines a standard pressure correction algorithm with an algebraic volume of fluid method, MTHINC [1]. Solution method: the code employs a second-order-finite difference discretization and solves the two-fluid Navier-Stokes equation using a projection method. It can be run both on CPU-architectures and GPU-architectures.
  •  
7.
  • Korrel, Maarten, et al. (författare)
  • Minimally invasive versus open distal pancreatectomy for resectable pancreatic cancer (DIPLOMA): an international randomised non-inferiority trial
  • 2023
  • Ingår i: The Lancet Regional Health. - : ELSEVIER. - 2666-7762. ; 31
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The oncological safety of minimally invasive surgery has been questioned for several abdominal cancers. Concerns also exist regarding the use of minimally invasive distal pancreatectomy (MIDP) in patients with resectable pancreatic cancer as randomised trials are lacking. Methods In this international randomised non-inferiority trial, we recruited adults with resectable pancreatic cancer from 35 centres in 12 countries. Patients were randomly assigned to either MIDP (laparoscopic or robotic) or open distal pancreatectomy (ODP). Both patients and pathologists were blinded to the assigned approach. Primary endpoint was radical resection (R0, & GE;1 mm free margin) in patients who had ultimately undergone resection. Analyses for the primary endpoint were by modified intention-to-treat, excluding patients with missing data on primary endpoint. The pre-defined non-inferiority margin of -7% was compared with the lower limit of the two-sided 90% confidence interval (CI) of absolute difference in the primary endpoint. This trial is registered with the ISRCTN registry (ISRCTN44897265). Findings Between May 8, 2018 and May 7, 2021, 258 patients were randomly assigned to MIDP (131 patients) or ODP (127 patients). Modified intention-to-treat analysis included 114 patients in the MIDP group and 110 patients in the ODP group. An R0 resection occurred in 83 (73%) patients in the MIDP group and in 76 (69%) patients in the ODP group (difference 3.7%, 90% CI -6.2 to 13.6%; pnon-inferiority = 0.039). Median lymph node yield was comparable (22.0 [16.0-30.0] vs 23.0 [14.0-32.0] nodes, p = 0.86), as was the rate of intraperitoneal recurrence (41% vs 38%, p = 0.45). Median follow-up was 23.5 (interquartile range 17.0-30.0) months. Other postoperative outcomes were comparable, including median time to functional recovery (5 [95% CI 4.5-5.5] vs 5 [95% CI 4.7-5.3] days; p = 0.22) and overall survival (HR 0.99, 95% CI 0.67-1.46, p = 0.94). Serious adverse events were reported in 23 (18%) of 131 patients in the MIDP group vs 28 (22%) of 127 patients in the ODP group. Interpretation This trial provides evidence on the non-inferiority of MIDP compared to ODP regarding radical resection rates in patients with resectable pancreatic cancer. The present findings support the applicability of minimally invasive surgery in patients with resectable left-sided pancreatic cancer. Funding Medtronic Covidien AG, Johnson & Johnson Medical Limited, Dutch Gastroenterology Society. Copyright & COPY; 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
  •  
8.
  • Martin, David, et al. (författare)
  • Defining Major Surgery: A Delphi Consensus Among European Surgical Association (ESA) Members
  • 2020
  • Ingår i: World Journal of Surgery. - : Springer Science and Business Media LLC. - 0364-2313 .- 1432-2323. ; 44:7, s. 2211-2219
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2020, Société Internationale de Chirurgie. Background: Major surgery is a term frequently used but poorly defined. The aim of the present study was to reach a consensus in the definition of major surgery within a panel of expert surgeons from the European Surgical Association (ESA). Methods: A 3-round Delphi process was performed. All ESA members were invited to participate in the expert panel. In round 1, experts were inquired by open- and closed-ended questions on potential criteria to define major surgery. Results were analyzed and presented back anonymously to the panel within next rounds. Closed-ended questions in round 2 and 3 were either binary or statements to be rated on a Likert scale ranging from 1 (strong disagreement) to 5 (strong agreement). Participants were sent 3 reminders at 2-week intervals for each round. 70% of agreement was considered to indicate consensus. Results: Out of 305 ESA members, 67 (22%) answered all the 3 rounds. Significant comorbidities were the only preoperative factor retained to define major surgery (78%). Vascular clampage or organ ischemia (92%), high intraoperative blood loss (90%), high noradrenalin requirements (77%), long operative time (73%) and perioperative blood transfusion (70%) were procedure-related factors that reached consensus. Regarding postoperative factors, systemic inflammatory response (76%) and the need for intensive or intermediate care (88%) reached consensus. Consequences of major surgery were high morbidity (>30% overall) and mortality (>2%). Conclusion: ESA experts defined major surgery according to extent and complexity of the procedure, its pathophysiological consequences and consecutive clinical outcomes.
  •  
9.
  • Scapin, Nicolo, et al. (författare)
  • Evaporating Rayleigh-Benard convection : prediction of interface temperature and global heat transfer modulation
  • 2023
  • Ingår i: Journal of Fluid Mechanics. - : Cambridge University Press (CUP). - 0022-1120 .- 1469-7645. ; 957
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose an analytical model to estimate the interface temperature Theta(Gamma) and the Nusselt number Nu for an evaporating two-layer Rayleigh-Benard configuration in statistically stationary conditions. The model is based on three assumptions: (i) the Oberbeck-Boussinesq approximation can be applied to the liquid phase, while the gas thermophysical properties are generic functions of thermodynamic pressure, local temperature and vapour composition, (ii) the Grossmann-Lohse theory for thermal convection can be applied to the liquid and gas layers separately and (iii) the vapour content in the gas can be taken as the mean value at the gas-liquid interface. We validate this setting using direct numerical simulations in a parameter space composed of the Rayleigh number (10(6) <= Ra <= 10(8)) and the temperature differential (0.05 <= epsilon <= 0.20), which modulates the variation of state variables in the gas layer. To better disentangle the variable property effects on Theta(Gamma) and Nu, simulations are performed in two conditions. First, we consider the case of uniform gas properties except for the gas density and gas-liquid diffusion coefficient. Second, we include the variation of specific heat capacity, dynamic viscosity and thermal conductivity using realistic equations of state. Irrespective of the employed setting, the proposed model agrees very well with the numerical simulations over the entire range of Ra-epsilon investigated.
  •  
10.
  • Zanti, Maria, et al. (författare)
  • A Likelihood Ratio Approach for Utilizing Case-Control Data in the Clinical Classification of Rare Sequence Variants : Application to BRCA1 and BRCA2
  • 2023
  • Ingår i: Human Mutation. - : John Wiley & Sons. - 1059-7794 .- 1098-1004. ; 2023
  • Tidskriftsartikel (refereegranskat)abstract
    • A large number of variants identified through clinical genetic testing in disease susceptibility genes are of uncertain significance (VUS). Following the recommendations of the American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP), the frequency in case-control datasets (PS4 criterion) can inform their interpretation. We present a novel case-control likelihood ratio-based method that incorporates gene-specific age-related penetrance. We demonstrate the utility of this method in the analysis of simulated and real datasets. In the analysis of simulated data, the likelihood ratio method was more powerful compared to other methods. Likelihood ratios were calculated for a case-control dataset of BRCA1 and BRCA2 variants from the Breast Cancer Association Consortium (BCAC) and compared with logistic regression results. A larger number of variants reached evidence in favor of pathogenicity, and a substantial number of variants had evidence against pathogenicity-findings that would not have been reached using other case-control analysis methods. Our novel method provides greater power to classify rare variants compared with classical case-control methods. As an initiative from the ENIGMA Analytical Working Group, we provide user-friendly scripts and preformatted Excel calculators for implementation of the method for rare variants in BRCA1, BRCA2, and other high-risk genes with known penetrance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy