SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nielsen Rasmus) srt2:(2007-2009)"

Sökning: WFRF:(Nielsen Rasmus) > (2007-2009)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Axelsson, Erik, et al. (författare)
  • The effect of ancient DNA damage on inferences of demographic histories.
  • 2008
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 25:10, s. 2181-7
  • Tidskriftsartikel (refereegranskat)abstract
    • The field of ancient DNA (aDNA) is casting new light on many evolutionary questions. However, problems associated with the postmortem instability of DNA may complicate the interpretation of aDNA data. For example, in population genetic studies, the inclusion of damaged DNA may inflate estimates of diversity. In this paper, we examine the effect of DNA damage on population genetic estimates of ancestral population size. We simulate data using standard coalescent simulations that include postmortem damage and show that estimates of effective population sizes are inflated around, or right after, the sampling time of the ancestral DNA sequences. This bias leads to estimates of increasing, and then decreasing, population sizes, as observed in several recently published studies. We reanalyze a recently published data set of DNA sequences from the Bison (Bison bison/Bison priscus) and show that the signal for a change in effective population size in this data set vanishes once the effects of putative damage are removed. Our results suggest that population genetic analyses of aDNA sequences, which do not accurately account for damage, should be interpreted with great caution.
  •  
2.
  • Clark, Andrew G., et al. (författare)
  • Evolution of genes and genomes on the Drosophila phylogeny
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 450:7167, s. 203-218
  • Tidskriftsartikel (refereegranskat)abstract
    • Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
  •  
3.
  • Johnson, Sarah Stewart, et al. (författare)
  • Ancient bacteria show evidence of DNA repair
  • 2007
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 104:36, s. 14401-14405
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent claims of cultivable ancient bacteria within sealed environments highlight our limited understanding of the mechanisms behind long-term cell survival. It remains unclear how dormancy, a favored explanation for extended cellular persistence, can cope with spontaneous genomic decay over geological timescales. There has been no direct evidence in ancient microbes for the most likely mechanism, active DNA repair, or for the metabolic activity necessary to sustain it. In this paper, we couple PCR and enzymatic treatment of DNA with direct respiration measurements to investigate long-term survival of bacteria sealed in frozen conditions for up to one million years. Our results show evidence of bacterial survival in samples up to half a million years in age, making this the oldest independently authenticated DNA to date obtained from viable cells. Additionally, we find strong evidence that this long-term survival is closely tied to cellular metabolic activity and DNA repair that over time proves to be superior to dormancy as a mechanism in sustaining bacteria viability.
  •  
4.
  • Pastene, Luis A., et al. (författare)
  • Radiation and speciation of pelagic organisms during periods of global warming : the case of the common minke whale, Balaenoptera acutorostrata
  • 2007
  • Ingår i: Molecular Ecology. - 0962-1083 .- 1365-294X. ; 16:7, s. 1481-1495
  • Tidskriftsartikel (refereegranskat)abstract
    • How do populations of highly mobile species inhabiting open environments become reproductively isolated and evolve into new species? We test the hypothesis that elevated ocean-surface temperatures can facilitate allopatry among pelagic populations and thus promote speciation. Oceanographic modelling has shown that increasing surface temperatures cause localization and reduction of upwelling, leading to fragmentation of feeding areas critical to pelagic species. We test our hypothesis by genetic analyses of populations of two closely related baleen whales, the Antarctic minke whale (Balaenoptera bonaerensis) and common minke whale (Balaenoptera acutorostrata) whose current distributions and migration patterns extent are largely determined by areas of consistent upwelling with high primary production. Phylogeographic and population genetic analyses of mitochondrial DNA control-region nucleotide sequences collected from 467 whales sampled in four different ocean basins were employed to infer the evolutionary relationship among populations of B. acutorostrata by rooting an intraspecific phylogeny with a population of B. bonaerensis. Our findings suggest that the two species diverged in the Southern Hemisphere less than 5 million years ago (Ma). This estimate places the speciation event during a period of extended global warming in the Pliocene. We propose that elevated ocean temperatures in the period facilitated allopatric speciation by disrupting the continuous belt of upwelling maintained by the Antarctic Circumpolar Current. Our analyses revealed that the current populations of B. acutorostrata likely diverged after the Pliocene some 1.5 Ma when global temperatures had decreased and presumably coinciding with the re-establishment of the polar-equatorial temperature gradient that ultimately drives upwelling. In most population samples, we detected genetic signatures of exponential population expansions, consistent with the notion of increasing carrying capacity after the Pliocene. Our hypothesis that prolonged periods of global warming facilitate speciation in pelagic marine species that depend on upwelling should be tested by comparative analyses in other pelagic species.
  •  
5.
  • Willerslev, Eske, et al. (författare)
  • Ancient biomolecules from deep ice cores reveal a forested Southern Greenland
  • 2007
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 317:5834, s. 111-114
  • Tidskriftsartikel (refereegranskat)abstract
    • It is difficult to obtain fossil data from the 10% of Earth's terrestrial surface that is covered by thick glaciers and ice sheets, and hence, knowledge of the paleoenvironments of these regions has remained limited. We show that DNA and amino acids from buried organisms can be recovered from the basal sections of deep ice cores, enabling reconstructions of past flora and fauna. We show that high-altitude southern Greenland, currently lying below more than 2 kilometers of ice, was inhabited by a diverse array of conifer trees and insects within the past million years. The results provide direct evidence in support of a forested southern Greenland and suggest that many deep ice cores may contain genetic records of paleoenvironments in their basal sections.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy