SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Nielsen Troels T.) "

Search: WFRF:(Nielsen Troels T.)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Marouli, Eirini, et al. (author)
  • Rare and low-frequency coding variants alter human adult height
  • 2017
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 542:7640, s. 186-190
  • Journal article (peer-reviewed)abstract
    • Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
  •  
2.
  • Chandrasekaran, Abinaya, et al. (author)
  • Astrocytic reactivity triggered by defective autophagy and metabolic failure causes neurotoxicity in frontotemporal dementia type 3
  • 2021
  • In: Stem Cell Reports. - : Elsevier BV. - 2213-6711. ; , s. 2736-2751
  • Journal article (peer-reviewed)abstract
    • Frontotemporal dementia type 3 (FTD3), caused by a point mutation in the charged multivesicular body protein 2B (CHMP2B), affects mitochondrial ultrastructure and the endolysosomal pathway in neurons. To dissect the astrocyte-specific impact of mutant CHMP2B expression, we generated astrocytes from human induced pluripotent stem cells (hiPSCs) and confirmed our findings in CHMP2B mutant mice. Our data provide mechanistic insights into how defective autophagy causes perturbed mitochondrial dynamics with impaired glycolysis, increased reactive oxygen species, and elongated mitochondrial morphology, indicating increased mitochondrial fusion in FTD3 astrocytes. This shift in astrocyte homeostasis triggers a reactive astrocyte phenotype and increased release of toxic cytokines, which accumulate in nuclear factor kappa b (NF-κB) pathway activation with increased production of CHF, LCN2, and C3 causing neurodegeneration.
  •  
3.
  • Hellem, Marie N.N., et al. (author)
  • Decreased CSF oxytocin relates to measures of social cognitive impairment in Huntington's disease patients
  • 2022
  • In: Parkinsonism and Related Disorders. - : Elsevier BV. - 1353-8020. ; 99, s. 23-29
  • Journal article (peer-reviewed)abstract
    • Objective: Huntington's disease (HD) is an inherited neurodegenerative disease with motor, cognitive and psychiatric symptoms. Non-motor symptoms like depression and altered social cognition are proposed to be caused by dysfunction of the hypothalamus. We measured the hypothalamic neuropeptide oxytocin in plasma and cerebrospinal fluid (CSF) in a cohort of HD gene expansion carriers (HDGECs), compared the levels to healthy HD family controls and correlated oxytocin levels to disease progression and social cognition. Methods: We recruited 113 HDGECs and 33 controls. Psychiatric and cognitive symptoms were evaluated, and social cognition was assessed with the Emotion Hexagon test, Reading the Mind in the Eyes and The Awareness of Social Inference Test. The levels of oxytocin in CSF and blood were analyzed by radioimmunoassay. Results: We found the level of oxytocin in CSF to be significantly lower by 33.5% in HDGECs compared to controls (p = 0.016). When dividing the HDGECs into groups with or without cognitive impairment, we found the oxytocin level to be significantly lower by 30.3% in the HDGECs with cognitive symptoms (p = 0.046). We found a statistically significant correlation between the level of oxytocin and scores on social cognition (Reading the Mind in the Eyes p = 0.0019; Emotion Hexagon test: p = 0.0062; The Awareness of Social Inference Test: p = 0.002). Conclusions: This is the first study to measure oxytocin in the CSF of HDGECs. We find that HDGECs have a significantly lower level of oxytocin compared to controls, and that the level of oxytocin may represent an objective and comparable measure that could be used as a state biomarker for impairment of social cognition. We suggest treatment trials to evaluate a potential effect of oxytocin on social cognition in HD.
  •  
4.
  • Hutchinson, Peter J, et al. (author)
  • Consensus statement from the 2014 International Microdialysis Forum
  • 2015
  • In: Intensive Care Medicine. - : Springer Science and Business Media LLC. - 0342-4642 .- 1432-1238. ; 41:9, s. 1517-1528
  • Journal article (peer-reviewed)abstract
    • Microdialysis enables the chemistry of the extracellular interstitial space to be monitored. Use of this technique in patients with acute brain injury has increased our understanding of the pathophysiology of several acute neurological disorders. In 2004, a consensus document on the clinical application of cerebral microdialysis was published. Since then, there have been significant advances in the clinical use of microdialysis in neurocritical care. The objective of this review is to report on the International Microdialysis Forum held in Cambridge, UK, in April 2014 and to produce a revised and updated consensus statement about its clinical use including technique, data interpretation, relationship with outcome, role in guiding therapy in neurocritical care and research applications.
  •  
5.
  • Rostgaard, Nina, et al. (author)
  • TMEM106B and ApoE polymorphisms in CHMP2B-mediated frontotemporal dementia (FTD-3)
  • 2017
  • In: Neurobiology of Aging. - : Elsevier BV. - 0197-4580. ; 59, s. 1-221
  • Journal article (peer-reviewed)abstract
    • Single-nucleotide polymorphisms in the TMEM106B gene have been identified as a risk factor in frontotemporal dementia (FTD). The major allele of SNP rs3173615 is a risk factor in sporadic FTD, whereas the minor allele seems protective in GRN- and C9orf72-mediated FTD. The role of apolipoprotein E (ApoE) in FTD is uncertain, though an established risk factor in Alzheimer's disease. In a unique Danish family, inherited FTD is caused by a mutation in the CHMP2B gene located on chromosome 3 (FTD-3). In this family, both risk factors TMEM106B and ApoE were analyzed and correlated to age at onset (AAO) and progression in terms of age at institutionalization (AAI) and age at death (AAD). Although TMEM106B and CHMP2B share cellular function in that both localize to endolysosomes, TMEM106B genotypes appeared to have no influence on the clinical disease course. ApoE ε4 was found to be a protective factor with later AAO and AAI, whereas ε2 seemed to aggravate the disease with earlier AAO and AAD. These results indicate ApoE ε2 as a risk factor in FTD-3 and suggest a protective role of ε4.
  •  
6.
  • Mullari, Meeli, et al. (author)
  • Characterising the RNA-binding protein atlas of the mammalian brain uncovers RBM5 misregulation in mouse models of Huntington’s disease
  • 2023
  • In: Nature Communications. - 2041-1723. ; 14:1
  • Journal article (peer-reviewed)abstract
    • RNA-binding proteins (RBPs) are key players regulating RNA processing and are associated with disorders ranging from cancer to neurodegeneration. Here, we present a proteomics workflow for large-scale identification of RBPs and their RNA-binding regions in the mammalian brain identifying 526 RBPs. Analysing brain tissue from males of the Huntington’s disease (HD) R6/2 mouse model uncovered differential RNA-binding of the alternative splicing regulator RBM5. Combining several omics workflows, we show that RBM5 binds differentially to transcripts enriched in pathways of neurodegeneration in R6/2 brain tissue. We further find these transcripts to undergo changes in splicing and demonstrate that RBM5 directly regulates these changes in human neurons derived from embryonic stem cells. Finally, we reveal that RBM5 interacts differently with several known huntingtin interactors and components of huntingtin aggregates. Collectively, we demonstrate the applicability of our method for capturing RNA interactor dynamics in the contexts of tissue and disease.
  •  
7.
  • Nielsen, Troels T., et al. (author)
  • Incorporating double copies of a chromatin insulator into lentiviral vectors results in less viral integrants
  • 2009
  • In: BMC Biotechnology. - : Springer Science and Business Media LLC. - 1472-6750. ; 9
  • Journal article (peer-reviewed)abstract
    • Background: Lentiviral vectors hold great promise as gene transfer vectors in gene therapeutic settings. However, problems related to the risk of insertional mutagenesis, transgene silencing and positional effects have stalled the use of such vectors in the clinic. Chromatin insulators are boundary elements that can prevent enhancer-promoter interactions, if placed between these elements, and protect transgene cassettes from silencing and positional effects. It has been suggested that insulators can improve the safety and performance of lentiviral vectors. Therefore insulators have been incorporated into lentiviral vectors in order to enhance their safety profile and improve transgene expression. Commonly such insulator vectors are produced at lower titers than control vectors thus limiting their potential use. Results: In this study we cloned in tandem copies of the chicken beta-globin insulator (cHS4) on both sides of the transgene cassette in order to enhance the insulating effect. Our insulator vectors were produced at significantly lower titers compared to control vectors, and we show that this reduction in titer is due to a block during the transduction process that appears after reverse transcription but before integration of the viral DNA. This non-integrated viral DNA could be detected by PCR and, importantly, prevented efficient transduction of target cells. Conclusion: These results have importance for the future use of insulator sequences in lentiviral vectors and might limit the use of insulators in vectors for in vivo use. Therefore, a careful analysis of the optimal design must be performed before insulators are included into clinical lentiviral vectors.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view