SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nilsson Sköld Helen 1970) srt2:(2002-2004)"

Sökning: WFRF:(Nilsson Sköld Helen 1970) > (2002-2004)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Tony, 1973-, et al. (författare)
  • Phosphoinositide 3-kinase is involved in Xenopus and Labrus melanophore aggregation
  • 2003
  • Ingår i: Cellular Signalling. - 0898-6568 .- 1873-3913. ; 15:12, s. 1119-1127
  • Tidskriftsartikel (refereegranskat)abstract
    • Melanophores are pigmented cells capable of quick colour changes through coordinated transport of their intracellular pigment granules. We demonstrate the involvement of phosphoinositide 3-kinase (PI3-K) in Xenopus and Labrus aggregation by the use of the PI3-K inhibitor, LY-294002. In Xenopus, wortmannin-insensitive PI3-K was found to be essential for the aggregation, mitogen-activated protein kinase (MAPK) activation and tyrosine phosphorylation of a 280-kDa protein, and for the maintenance of low cyclic adenosine 3':5'-monophosphate (cAMP) during the aggregated state. Pre-aggregated cells disperse completely to LY-294002 at 50-100 muM, involving a transient elevation in cAMP due to adenylate cyclase (AC) stimulation or to inhibition of cyclic nucleotide phosphodiesterase (PDE). The inactive analogue LY-303511 did not induce dispersion at the same concentrations. PDE4 and/or PDE2 was found to be involved in melanosome aggregation. The similar kinetics of LY-294002 and various PDE inhibitors indicates that the elevation of cAMP might be due to inhibition of PDE. In Labrus melanophores, LY-294002 had a less dramatic effect, probably due to less dependence on PDE in regulation of cAMP levels. In Xenopus aggregation, we suggest that melatonin stimulation of the Mel1c receptor via G(betagamma) activates PI3-K that, directly or indirectly via MAPK, activates PDE. (C) 2003 Elsevier Inc. All rights reserved.
  •  
2.
  • Aspengren, Sara, 1977, et al. (författare)
  • Noradrenaline- and melatonin-mediated regulation of pigment aggregation in fish melanophores
  • 2003
  • Ingår i: Pigment Cell Research. - : Wiley. - 0893-5785. ; 16:1, s. 59-64
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of melatonin and noradrenaline (NA) on bi-directional melanosome transport were analysed in primary cultures of melanophores from the Atlantic cod. Both agents mediated rapid melanosome aggregation, and by using receptor antagonists, melatonin was found to bind to a melatonin receptor whereas NA binds to an α2-adrenoceptor. It has previously been stated that melatonin-mediated melanosome aggregation in Xenopus is coupled with tyrosine phosphorylation of a so far unidentified high molecular weight protein and we show that although acting through different receptors and through somewhat different downstream signalling events, tyrosine phosphorylation is of the utmost importance for melanosome aggregation mediated by both NA and melatonin in cod melanophores. Together with cyclic adenosine 3-phosphate-fluctuations, tyrosine phosphorylation functions as a switch signal for melanosome aggregation and dispersion in these cells.
  •  
3.
  • Hansson, Mattias, et al. (författare)
  • Artifactual insulin release from differentiated embryonic stem cells.
  • 2004
  • Ingår i: Diabetes. - 0012-1797. ; 53:10, s. 2603-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Several recent reports claim the generation of insulin-producing cells from embryonic stem cells via the differentiation of progenitors that express nestin. Here, we investigate further the properties of these insulin-containing cells. We find that although differentiated cells contain immunoreactive insulin, they do not contain proinsulin-derived C-peptide. Furthermore, we find variable insulin release from these cells upon glucose addition, but C-peptide release is never detected. In addition, many of the insulin-immunoreactive cells are undergoing apoptosis or necrosis. We further show that cells cultured in the presence of a phosphoinositide 3-kinase inhibitor, which previously was reported to facilitate the differentiation of insulin(+) cells, are not C-peptide immunoreactive but take up fluorescein isothiocyanate-labeled insulin from the culture medium. Together, these data suggest that nestin(+) progenitor cells give rise to a population of cells that contain insulin, not as a result of biosynthesis but from the uptake of exogenous insulin. We conclude that C-peptide biosynthesis and secretion should be demonstrated to claim insulin production from embryonic stem cell progeny.
  •  
4.
  • Nilsson Sköld, Helen, 1970, et al. (författare)
  • Regulatory control of both microtubule- and actin-dependent fish melanosome movement
  • 2002
  • Ingår i: Pigment Cell Research. - 0893-5785. ; 15:5, s. 357-366
  • Tidskriftsartikel (refereegranskat)abstract
    • In fish melanophores, melanosomes can either aggregate around the cell centre or disperse uniformly throughout the cell. This organelle transport involves microtubule- and actin-dependent motors and is regulated by extracellular stimuli that modulate levels of intracellular cyclic adenosine 3-phosphate (cAMP). We analysed melanosome dynamics in Atlantic cod melanophores under different experimental conditions in order to increase the understanding of the regulation and relative contribution of the transport systems involved. By inhibiting dynein function via injection of inhibitory antidynein IgGs, and modulating cAMP levels using forskolin, we present cellular evidence that dynein is inactivated by increased cAMP during dispersion and that the kinesin-related motor is inactivated by low cAMP levels during aggregation. Inhibition of dynein further resulted in hyperdispersed melanosomes, which subsequently reversed movement towards a more normal dispersed state, pointing towards a peripheral feedback regulation in maintaining the evenly dispersed state. This reversal was blocked by noradrenaline. Analysis of actin-mediated melanosome movements shows that actin suppresses aggregation and dispersion, and indicates the possibility of down-regulating actin-dependent melanosome movement by noradrenaline. Data from immuno-electron microscopy indicate that myosinV is associated with fish melanosomes. Taken together, our study presents evidence that points towards a model where both microtubule- and actin-mediated melanosome transport are synchronously regulated during aggregation and dispersion, and this provides a cell physiological explanation behind the exceptionally fast rate of background adaptation in fish.
  •  
5.
  •  
6.
  • Nilsson Sköld, Helen, 1970, et al. (författare)
  • The cytoskeleton in fish melanophore melanosome positioning.
  • 2002
  • Ingår i: Microscopy research and technique. - : Wiley. - 1059-910X. ; 58:6, s. 464-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Melanophore melanosomes organelles can be regulated to move and locate correspondingly to many other different organelle types. Comparing lessons from analysis of a specific melanosome distribution can, therefore, contribute to the understanding of distribution of other organelles, and vice versa. From such data, it is now generally accepted that microtubules provide directed long-distance movement, while cell peripheral movements include microfilaments. In fish melanophores, both actin and dynein exhibit counter-forces to the kinesin-like protein in maintaining the evenly dispersed state, while actin and kinesin exhibit counter-forces to dynein in many other systems. Lessons from elevating cAMP levels indicate the presence of a peripheral feedback regulatory system involved in maintaining the evenly dispersed state. Studies from dynein inhibition suggest that the kinesin-like protein involved in fish melanosome dispersal is regulated in contrast to many other systems. One would further expect melanosome transport to be regulated also on actin/myosin, in order to prevent actin-dependent capture of melanosomes during the microtubule-dependent aggregation and dispersion. General findings will be discussed in comparison with positioning and movement of other organelle types in cells. Finally, recent data on melanosome-dependent organising of microtubules show that dynein is involved in nucleating microtubules extending from melanosome aggregates in melanophore fragments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy