SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ninerola Baizan A.) srt2:(2022)"

Sökning: WFRF:(Ninerola Baizan A.) > (2022)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Salvado, G., et al. (författare)
  • Brain alterations in the early Alzheimer's continuum with amyloid-beta, tau, glial and neurodegeneration CSF markers
  • 2022
  • Ingår i: Brain Communications. - : Oxford University Press (OUP). - 2632-1297. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Higher grey matter volumes/cortical thickness and fluorodeoxyglucose uptake have been consistently found in cognitively unimpaired individuals with abnormal Alzheimer's disease biomarkers compared with those with normal biomarkers. It has been hypothesized that such transient increases may be associated with neuroinflammatory mechanisms triggered in response to early Alzheimer's pathology. Here, we evaluated, in the earliest stages of the Alzheimer's continuum, associations between grey matter volume and fluorodeoxyglucose uptake with CSF biomarkers of several pathophysiological mechanisms known to be altered in preclinical Alzheimer's disease stages. We included 319 cognitively unimpaired participants from the ALFA+ cohort with available structural MRI, fluorodeoxyglucose PET and CSF biomarkers of amyloid-beta and tau pathology (phosphorylated tau and total tau), synaptic dysfunction (neurogranin), neuronal and axonal injury (neurofilament light), glial activation (soluble triggering receptor on myeloid cells 2, YKL40, GFAP, interleukin-6 and S100b) and alpha-synuclein using the Roche NeuroToolKit. We first used the amyloid-beta/tau framework to investigate differences in the neuroimaging biomarkers between preclinical Alzheimer's disease stages. Then, we looked for associations between the neuroimaging markers and all the CSF markers. Given the non-negative nature of the concentrations of CSF biomarkers and their high collinearity, we clustered them using non-negative matrix factorization approach (components) and sought associations with the imaging markers. By groups, higher grey matter volumes were found in the amyloid-beta-positive tau-negative participants with respect to the reference amyloid-beta-negative tau-negative group. Both amyloid-beta and tau-positive participants showed higher fluorodeoxyglucose uptake than tau-negative individuals. Using the obtained components, we observed that tau pathology accompanied by YKL-40 (astrocytic marker) was associated with higher grey matter volumes and fluorodeoxyglucose uptake in extensive brain areas. Higher grey matter volumes in key Alzheimer-related regions were also found in association with two other components characterized by a higher expression of amyloid-beta in combination with different glial markers: one with higher GFAP and S100b levels (astrocytic markers) and the other one with interleukin-6 (pro-inflammatory). Notably, these components' expression had different behaviours across amyloid-beta/tau stages. Taken together, our results show that CSF amyloid-beta and phosphorylated tau, in combination with different aspects of glial response, have distinctive associations with higher grey matter volumes and increased glucose metabolism in key Alzheimer-related regions. These mechanisms combine to produce transient higher grey matter volumes and fluorodeoxyglucose uptake at the earliest stages of the Alzheimer's continuum, which may revert later on the course of the disease when neurodegeneration drives structural and metabolic cerebral changes. Salvado et al. show that amyloid-beta and tau pathologies, in combination with different aspects of glial response, have distinctive associations with brain's structure and function in key Alzheimer-related regions. These mechanisms combine to produce transient higher grey matter volumes and glucose metabolism at the earliest stages of the Alzheimer's continuum.
  •  
2.
  • Salvado, G., et al. (författare)
  • Reactive astrogliosis is associated with higher cerebral glucose consumption in the early Alzheimer's continuum
  • 2022
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 49, s. 4567-4579
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose Glial activation is one of the earliest mechanisms to be altered in Alzheimer's disease (AD). Glial fibrillary acidic protein (GFAP) relates to reactive astrogliosis and can be measured in both cerebrospinal fluid (CSF) and blood. Plasma GFAP has been suggested to become altered earlier in AD than its CSF counterpart. Although astrocytes consume approximately half of the glucose-derived energy in the brain, the relationship between reactive astrogliosis and cerebral glucose metabolism is poorly understood. Here, we aimed to investigate the association between fluorodeoxyglucose ([F-18]FDG) uptake and reactive astrogliosis, by means of GFAP quantified in both plasma and CSF for the same participants. Methods We included 314 cognitively unimpaired participants from the ALFA + cohort, 112 of whom were amyloid-beta (A beta) positive. Associations between GFAP markers and [F-18]FDG uptake were studied. We also investigated whether these associations were modified by A beta and tau status (AT stages). Results Plasma GFAP was positively associated with glucose consumption in the whole brain, while CSF GFAP associations with [F-18]FDG uptake were only observed in specific smaller areas like temporal pole and superior temporal lobe. These associations persisted when accounting for biomarkers of A beta pathology but became negative in A beta-positive and tau-positive participants (A + T +) in similar areas of AD-related hypometabolism. Conclusions Higher astrocytic reactivity, probably in response to early AD pathological changes, is related to higher glucose consumption. With the onset of tau pathology, the observed uncoupling between astrocytic biomarkers and glucose consumption might be indicative of a failure to sustain the higher energetic demands required by reactive astrocytes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy