SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Niskanen Alina K.) srt2:(2020)"

Sökning: WFRF:(Niskanen Alina K.) > (2020)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hagen, Ingerid J., et al. (författare)
  • A genome-wide linkage map for the house sparrow (Passer domesticus) provides insights into the evolutionary history of the avian genome
  • 2020
  • Ingår i: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 20:2, s. 544-559
  • Tidskriftsartikel (refereegranskat)abstract
    • The house sparrow is an important model species for studying physiological, ecological and evolutionary processes in wild populations. Here, we present a medium density, genome wide linkage map for house sparrow (Passer domesticus) that has aided the assembly of the house sparrow reference genome, and that will provide an important resource for ongoing mapping of genes controlling important traits in the ecology and evolution of this species. Using a custom house sparrow 10 K iSelect Illumina SNP chip we have assigned 6,498 SNPs to 29 autosomal linkage groups, based on a mean of 430 informative meioses per SNP. The map was constructed by combining the information from linkage with that of the physical position of SNPs within scaffold sequences in an iterative process. Averaged between the sexes; the linkage map had a total length of 2,004 cM, with a longer map for females (2,240 cM) than males (1,801 cM). Additionally, recombination rates also varied along the chromosomes. Comparison of the linkage map to the reference genomes of zebra finch, collared flycatcher and chicken, showed a chromosome fusion of the two avian chromosomes 8 and 4A in house sparrow. Lastly, information from the linkage map was utilized to conduct analysis of linkage disequilibrium (LD) in eight populations with different effective population sizes (Ne) in order to quantify the background level LD. Together, these results aid the design of future association studies, facilitate the development of new genomic tools and support the body of research that describes the evolution of the avian genome.
  •  
2.
  • Lundregan, Sarah L., et al. (författare)
  • Resistance to gapeworm parasite has both additive and dominant genetic components in house sparrows, with evolutionary consequences for ability to respond to parasite challenge
  • 2020
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 29:20, s. 3812-3829
  • Tidskriftsartikel (refereegranskat)abstract
    • Host-parasite relationships are likely to change over the coming decades in response to climate change and increased anthropogenic stressors. Understanding the genetic architecture of parasite resistance will aid prediction of species' responses to intensified parasite challenge. The gapeworm "Syngamus trachea" is prevalent in natural bird populations and causes symptomatic infections ranging from mild to severe. The parasite may affect ecological processes by curtailing bird populations and is important due to its propensity to spread to commercially farmed birds. Our large-scale data set on an insular house sparrow metapopulation in northern Norway includes information on gapeworm prevalence and infection intensity, allowing assessment of the genetics of parasite resistance in a natural system. To determine whether parasite resistance has a heritable genetic component, we performed variance component analyses using animal models. Resistance to gapeworm had substantial additive genetic and dominance variance, and genome-wide association studies to identify single nucleotide polymorphisms associated with gapeworm resistance yielded multiple loci linked to immune function. Together with genome partitioning results, this indicates that resistance to gapeworm is under polygenic control in the house sparrow, and probably in other bird species. Hence, our results provide the foundation needed to study any eco-evolutionary processes related to gapeworm infection, and show that it is necessary to use methods suitable for polygenic and nonadditive genetic effects on the phenotype.
  •  
3.
  • Niskanen, Alina K., et al. (författare)
  • Consistent scaling of inbreeding depression in space and time in a house sparrow metapopulation
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 117:25, s. 14584-14592
  • Tidskriftsartikel (refereegranskat)abstract
    • Inbreeding may increase the extinction risk of small populations. Yet, studies using modern genomic tools to investigate inbreeding depression in nature have been limited to single populations, and little is known about the dynamics of inbreeding depression in subdivided populations over time. Natural populations often experience different environmental conditions and differ in demographic history and genetic composition, characteristics that can affect the severity of inbreeding depression. We utilized extensive long-term data on more than 3,100 individuals from eight islands in an insular house sparrow metapopulation to examine the generality of inbreeding effects. Using genomic estimates of realized inbreeding, we discovered that inbred individuals had lower survival probabilities and produced fewer recruiting offspring than noninbred individuals. Inbreeding depression, measured as the decline in fitness-related traits per unit inbreeding, did not vary appreciably among populations or with time. As a consequence, populations with more resident inbreeding (due to their demographic history) paid a higher total fitness cost, evidenced by a larger variance in fitness explained by inbreeding within these populations. Our results are in contrast to the idea that effects of inbreeding generally depend on ecological factors and genetic differences among populations, and expand the understanding of inbreeding depression in natural subdivided populations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy