SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nitschelm Christian) srt2:(2019)"

Sökning: WFRF:(Nitschelm Christian) > (2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aguado, D. S., et al. (författare)
  • The Fifteenth Data Release of the Sloan Digital Sky Surveys : First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library
  • 2019
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics Publishing (IOPP). - 0067-0049 .- 1538-4365. ; 240:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July-2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA-we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020-2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data.
  •  
2.
  • Weinberg, David H., et al. (författare)
  • Chemical Cartography with APOGEE : Multi-element Abundance Ratios
  • 2019
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 874:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We map the trends of elemental abundance ratios across the Galactic disk, spanning R = 3-15 kpc and midplane distance vertical bar Z vertical bar = 0-2 kpc, for 15 elements in a sample of 20,485 stars measured by the SDSS/APOGEE survey (O, Na, Mg, Al, Si, P, S, K, Ca, V, Cr, Mn, Fe, Co, Ni). Adopting Mg rather than Fe as our reference element, and separating stars into two populations based on [Fe/Mg], we find that the median trends of [X/Mg] versus [Mg/H] in each population are nearly independent of location in the Galaxy. The full multi-element cartography can be summarized by combining these nearly universal median sequences with our measured metallicity distribution functions and the relative proportions of the low-[Fe/Mg] (high-alpha) and high-[Fe/Mg] (low-alpha) populations, which depend strongly on R and vertical bar Z vertical bar. We interpret the median sequences with a semi-empirical "two-process" model that describes both the ratio of core collapse and Type Ia supernova (SN Ia) contributions to each element and the metallicity dependence of the supernova yields. These observationally inferred trends can provide strong tests of supernova nucleosynthesis calculations. Our results lead to a relatively simple picture of abundance ratio variations in the Milky Way, in which the trends at any location can be described as the sum of two components with relative contributions that change systematically and smoothly across the Galaxy. Deviations from this picture and future extensions to other elements can provide further insights into the physics of stellar nucleosynthesis and unusual events in the Galaxy's history.
  •  
3.
  • Feuillet, Diane K., et al. (författare)
  • Spatial variations in the Milky Way disc metallicity-age relation
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 489:2, s. 1742-1752
  • Tidskriftsartikel (refereegranskat)abstract
    • Stellar ages are a crucial component to studying the evolution of the Milky Way. Using Gaia DR2 distance estimates, it is now possible to estimate stellar ages for a larger volume of evolved stars through isochrone matching. This work presents [M/H]-age and [alpha/M]-age relations derived for different spatial locations in the Milky Way disc. These relations are derived by hierarchically modelling the star formation history of stars within a given chemical abundance bin. For the first time, we directly observe that significant variation is apparent in the [M/H]-age relation as a function of both Galactocentric radius and distance from the disc midplane. The [M/H]-age relations support claims that radial migration has a significant effect in the plane of the disc. Using the [M/H] bin with the youngest mean age at each radial zone in the plane of the disc, the present-day metallicity gradient is measured to be -0.059 +/- 0.010 dex kpc(-1), in agreement with Cepheids and young field stars. We find a vertically flared distribution of young stars in the outer disc, confirming predictions of models and previous observations. The mean age of the [M/H]-[alpha/M] distribution of the solar neighbourhood suggests that the high-[M/H] stars are not an evolutionary extension of the low-alpha sequence. Our observational results are important constraints to Galactic simulations and models of chemical evolution.
  •  
4.
  • Souto, Diogo, et al. (författare)
  • Chemical Abundances of Main-sequence, Turnoff, Subgiant, and Red Giant Stars from APOGEE Spectra. II. Atomic Diffusion in M67 Stars
  • 2019
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 874:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical abundances for 15 elements (C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, and Ni) are presented for 83 stellar members of the 4 Gyr old solar-metallicity open cluster M67. The sample contains stars spanning a wide range of evolutionary phases, from G dwarfs to red clump stars. The abundances were derived from near-IR (lambda 1.5-1.7 mu m) high-resolution spectra (R = 22,500) from the SDSS-IV/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. A 1D local thermodynamic equilibrium abundance analysis was carried out using the APOGEE synthetic spectral libraries, via chi(2) minimization of the synthetic and observed spectra with the qASPCAP code. We found significant abundance differences (similar to 0.05-0.30 dex) between the M67 member stars as a function of the stellar mass (or position on the Hertzsprung-Russell diagram), where the abundance patterns exhibit a general depletion (in [X/H]) in stars at the main-sequence turnoff. The amount of the depletion is different for different elements. We find that atomic diffusion models provide, in general, good agreement with the abundance trends for most chemical species, supporting recent studies indicating that measurable atomic diffusion operates in M67 stars.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy