SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nolan Paul) srt2:(2020-2024)"

Sökning: WFRF:(Nolan Paul) > (2020-2024)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carleo, Ilaria, et al. (författare)
  • The Multiplanet System TOI-421*
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 160:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations-comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed Echelle Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution echelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements-and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of P-b = 5.19672 +/- 0.00049 days, a mass of M-b = 7.17 +/- 0.66 M-circle plus, and a radius of R-b = R-circle plus, whereas the outer warm Neptune, TOI-421 c, has a period of P-c = 16.06819 +/- 0.00035 days, a mass of M-c = 16.42(-1.04)(+1.06)M(circle plus), a radius of R-c = 5.09(-0.15)(+0.16)R(circle plus), and a density of rho(c) = 0.685(-0.072)(+0.080) cm(-3). With its characteristics, the outer planet (rho(c) = 0.685(-0.0072)(+0.080) cm(-3)) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Ly alpha transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed.
  •  
2.
  • Schweinsberg, Martin, et al. (författare)
  • Same data, different conclusions : Radical dispersion in empirical results when independent analysts operationalize and test the same hypothesis
  • 2021
  • Ingår i: Organizational Behavior and Human Decision Processes. - : Elsevier BV. - 0749-5978 .- 1095-9920. ; 165, s. 228-249
  • Tidskriftsartikel (refereegranskat)abstract
    • In this crowdsourced initiative, independent analysts used the same dataset to test two hypotheses regarding the effects of scientists' gender and professional status on verbosity during group meetings. Not only the analytic approach but also the operationalizations of key variables were left unconstrained and up to individual analysts. For instance, analysts could choose to operationalize status as job title, institutional ranking, citation counts, or some combination. To maximize transparency regarding the process by which analytic choices are made, the analysts used a platform we developed called DataExplained to justify both preferred and rejected analytic paths in real time. Analyses lacking sufficient detail, reproducible code, or with statistical errors were excluded, resulting in 29 analyses in the final sample. Researchers reported radically different analyses and dispersed empirical outcomes, in a number of cases obtaining significant effects in opposite directions for the same research question. A Boba multiverse analysis demonstrates that decisions about how to operationalize variables explain variability in outcomes above and beyond statistical choices (e.g., covariates). Subjective researcher decisions play a critical role in driving the reported empirical results, underscoring the need for open data, systematic robustness checks, and transparency regarding both analytic paths taken and not taken. Implications for orga-nizations and leaders, whose decision making relies in part on scientific findings, consulting reports, and internal analyses by data scientists, are discussed.
  •  
3.
  • Döscher, Ralf, et al. (författare)
  • The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6
  • 2022
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 15:7, s. 2973-3020
  • Tidskriftsartikel (refereegranskat)abstract
    • The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
  •  
4.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
5.
  • Chung, Wendy K., et al. (författare)
  • Precision medicine in diabetes : a Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)
  • 2020
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 63:9, s. 1671-1693
  • Tidskriftsartikel (refereegranskat)abstract
    • The convergence of advances in medical science, human biology, data science and technology has enabled the generation of new insights into the phenotype known as ‘diabetes’. Increased knowledge of this condition has emerged from populations around the world, illuminating the differences in how diabetes presents, its variable prevalence and how best practice in treatment varies between populations. In parallel, focus has been placed on the development of tools for the application of precision medicine to numerous conditions. This Consensus Report presents the American Diabetes Association (ADA) Precision Medicine in Diabetes Initiative in partnership with the European Association for the Study of Diabetes (EASD), including its mission, the current state of the field and prospects for the future. Expert opinions are presented on areas of precision diagnostics and precision therapeutics (including prevention and treatment) and key barriers to and opportunities for implementation of precision diabetes medicine, with better care and outcomes around the globe, are highlighted. Cases where precision diagnosis is already feasible and effective (i.e. monogenic forms of diabetes) are presented, while the major hurdles to the global implementation of precision diagnosis of complex forms of diabetes are discussed. The situation is similar for precision therapeutics, in which the appropriate therapy will often change over time owing to the manner in which diabetes evolves within individual patients. This Consensus Report describes a foundation for precision diabetes medicine, while highlighting what remains to be done to realise its potential. This, combined with a subsequent, detailed evidence-based review (due 2022), will provide a roadmap for precision medicine in diabetes that helps improve the quality of life for all those with diabetes.
  •  
6.
  • Chung, Wendy K., et al. (författare)
  • Precision Medicine in Diabetes : A Consensus Report From the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)
  • 2020
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 43:7, s. 1617-1635
  • Forskningsöversikt (refereegranskat)abstract
    • The convergence of advances in medical science, human biology, data science, and technology has enabled the generation of new insights into the phenotype known as "diabetes." Increased knowledge of this condition has emerged from populations around the world, illuminating the differences in how diabetes presents, its variable prevalence, and how best practice in treatment varies between populations. In parallel, focus has been placed on the development of tools for the application of precision medicine to numerous conditions. This Consensus Report presents the American Diabetes Association (ADA) Precision Medicine in Diabetes Initiative in partnership with the European Association for the Study of Diabetes (EASD), including its mission, the current state of the field, and prospects for the future. Expert opinions are presented on areas of precision diagnostics and precision therapeutics (including prevention and treatment), and key barriers to and opportunities for implementation of precision diabetes medicine, with better care and outcomes around the globe, are highlighted. Cases where precision diagnosis is already feasible and effective (i.e., monogenic forms of diabetes) are presented, while the major hurdles to the global implementation of precision diagnosis of complex forms of diabetes are discussed. The situation is similar for precision therapeutics, in which the appropriate therapy will often change over time owing to the manner in which diabetes evolves within individual patients. This Consensus Report describes a foundation for precision diabetes medicine, while highlighting what remains to be done to realize its potential. This, combined with a subsequent, detailed evidence-based review (due 2022), will provide a roadmap for precision medicine in diabetes that helps improve the quality of life for all those with diabetes.
  •  
7.
  • Hirschauer, Alec S., et al. (författare)
  • Imaging of I Zw 18 by JWST. I. Detecting Dusty Stellar Populations
  • 2024
  • Ingår i: Astronomical Journal. - 1538-3881 .- 0004-6256. ; 168:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a JWST imaging survey of I Zw 18, the archetypal extremely metal-poor, star-forming (SF), blue compact dwarf galaxy. With an oxygen abundance of only similar to 3% Z circle dot, it is among the lowest-metallicity systems known in the local Universe, and is, therefore, an excellent accessible analog for the galactic building blocks which existed at early epochs of ionization and star formation. These JWST data provide a comprehensive infrared (IR) view of I Zw 18 with eight filters utilizing both Near Infrared Camera (F115W, F200W, F356W, and F444W) and Mid-Infrared Instrument (F770W, F1000W, F1500W, and F1800W) photometry, which we have used to identify key stellar populations that are bright in the near- and mid-IR. These data allow for a better understanding of the origins of dust and dust-production mechanisms in metal-poor environments by characterizing the population of massive, evolved stars in the red supergiant (RSG) and asymptotic giant branch (AGB) phases. In addition, it enables the identification of the brightest dust-enshrouded young stellar objects (YSOs), which provide insight into the formation of massive stars at extremely low metallicities typical of the very early Universe. This paper provides an overview of the observational strategy and data processing, and presents first science results, including identifications of dusty AGB, RSG, and bright YSO candidates. These first results assess the scientific quality of JWST data and provide a guide for obtaining and interpreting future observations of the dusty and evolved stars inhabiting compact dwarf SF galaxies in the local Universe.
  •  
8.
  • Ji, Andrew L., et al. (författare)
  • Multimodal Analysis of Composition and Spatial Architecture in Human Squamous Cell Carcinoma
  • 2020
  • Ingår i: Cell. - : Cell Press. - 0092-8674 .- 1097-4172. ; 182:2, s. 497-
  • Tidskriftsartikel (refereegranskat)abstract
    • To define the cellular composition and architecture of cutaneous squamous cell carcinoma (cSCC), we combined single-cell RNA sequencing with spatial transcriptomics and multiplexed ion beam imaging from a series of human cSCCs and matched normal skin. cSCC exhibited four tumor subpopulations, three recapitulating normal epidermal states, and a tumor-specific keratinocyte (TSK) population unique to cancer, which localized to a fibrovascular niche. Integration of single-cell and spatial data mapped ligand-receptor networks to specific cell types, revealing TSK cells as a hub for intercellular communication. Multiple features of potential immunosuppression were observed, including T regulatory cell (Treg) co-localization with CD8 T cells in compartmentalized tumor stroma. Finally, single-cell characterization of human tumor xenografts and in vivo CRISPR screens identified essential roles for specific tumor subpopulation-enriched gene networks in tumorigenesis. These data define cSCC tumor and stromal cell subpopulations, the spatial niches where they interact, and the communicating gene networks that they engage in cancer.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy