SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Norberg Peter 1974) srt2:(2015-2019)"

Sökning: WFRF:(Norberg Peter 1974) > (2015-2019)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Bowen, C. D., et al. (författare)
  • Comparison of Herpes Simplex Virus 1 Strains Circulating in Finland Demonstrates the Uncoupling of Whole-Genome Relatedness and Phenotypic Outcomes of Viral Infection
  • 2019
  • Ingår i: Journal of Virology. - : American Society for Microbiology. - 0022-538X .- 1098-5514. ; 93:8
  • Tidskriftsartikel (refereegranskat)abstract
    • A majority of adults in Finland are seropositive carriers of herpes simplex viruses (HSV). Infection occurs at epithelial or mucosal surfaces, after which virions enter innervating nerve endings, eventually establishing lifelong infection in neurons of the sensory or autonomic nervous system. Recent data have highlighted the genetic diversity of HSV-1 strains and demonstrated apparent geographic patterns in strain similarity. Though multiple HSV-1 genomes have been sequenced from Europe to date, there is a lack of sequenced genomes from the Nordic countries. Finland's history includes at least two major waves of human migration, suggesting the potential for diverse viruses to persist in the population. Here, we used HSV-1 clinical isolates from Finland to test the relationship between viral phylogeny, genetic variation, and phenotypic characteristics. We found that Finnish HSV-1 isolates separated into two distinct phylogenetic groups, potentially reflecting historical waves of human (and viral) migration into Finland. Each HSV-1 isolate harbored a distinct set of phenotypes in cell culture, including differences in the amount of virus production, extracellular virus release, and cell-type-specific fitness. Importantly, the phylogenetic clusters were not predictive of any detectable pattern in phenotypic differences, demonstrating that whole-genome relatedness is not a proxy for overall viral phenotype. Instead, we highlight specific gene-level differences that may contribute to observed phenotypic differences, and we note that strains from different phylogenetic groups can contain the same genetic variations. IMPORTANCE Herpes simplex viruses (HSV) infect a majority of adults. Recent data have highlighted the genetic diversity of HSV-1 strains and demonstrated apparent genomic relatedness between strains from the same geographic regions. We used HSV-1 clinical isolates from Finland to test the relationship between viral genomic and geographic relationships, differences in specific genes, and characteristics of viral infection. We found that viral isolates from Finland separated into two distinct groups of genomic and geographic relatedness, potentially reflecting historical patterns of human and viral migration into Finland. These Finnish HSV-1 isolates had distinct infection characteristics in multiple cell types tested, which were specific to each isolate and did not group according to genomic and geographic relatedness. This demonstrates that HSV-1 strain differences in specific characteristics of infection are set by a combination of host cell type and specific viral gene-level differences.
  •  
4.
  • Depledge, D. P., et al. (författare)
  • High Viral Diversity and Mixed Infections in Cerebral Spinal Fluid from Cases of Varicella Zoster Virus Encephalitis
  • 2018
  • Ingår i: Journal of Infectious Diseases. - : Oxford University Press (OUP). - 0022-1899 .- 1537-6613. ; 218:10, s. 1592-1601
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. Varicella zoster virus (VZV) may cause encephalitis, both with and without rash. Here we investigate whether viruses recovered from the central nervous system (CNS; encephalitis or meningitis) differ genetically from those recovered from non-CNS samples. Methods. Enrichment-based deep sequencing of 45 VZV genomes from cerebral spinal fluid (CSF), plasma, bronchoalveolar lavage (BAL), and vesicles was carried out with samples collected from 34 patients with and without VZV infection of the CNS. Results. Viral sequences from multiple sites in the same patient were identical at the consensus level. Virus from vesicle fluid and CSF in cases of meningitis showed low-level diversity. By contrast, plasma, BAL, and encephalitis had higher numbers of variant alleles. Two CSF-encephalitis samples had high genetic diversity, with variant frequency patterns typical of mixed infections with different clades. Conclusions. Low viral genetic diversity in vesicle fluid is compatible with previous observations that VZV skin lesions arise from single or low numbers of virions. A similar result was observed in VZV from cases of VZV meningitis, a generally self-limiting infection. CSF from cases of encephalitis had higher diversity with evidence for mixed clade infections in 2 cases. We hypothesize that reactivation from multiple neurons may contribute to the pathogenesis of VZV encephalitis.
  •  
5.
  • Henningsson, Anna, et al. (författare)
  • Human tick-borne encephalitis and characterization of virus from biting tick
  • 2016
  • Ingår i: Emerging Infectious Diseases. - : Centers for Disease Control and Prevention (CDC). - 1080-6040 .- 1080-6059. ; 22:8, s. 1485-1487
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a case of human tick-borne encephalitis (TBE) in which the TBE virus was isolated from the biting tick. Viral growth and sequence were characterized and compared with those of a reference strain. Virus isolation from ticks from patients with TBE may offer a new approach for studies of epidemiology and pathogenicity. © 2016, Centers for Disease Control and Prevention (CDC). All rights reserved.
  •  
6.
  • Koelle, D. M., et al. (författare)
  • Worldwide circulation of HSV-2 x HSV-1 recombinant strains
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Homo sapiens harbor two distinct, medically significant species of simplexviruses, herpes simplex virus (HSV)-1 and HSV-2, with estimated divergence 6-8 million years ago (MYA). Unexpectedly, we found that circulating HSV-2 strains can contain HSV-1 DNA segments in three distinct genes. Using over 150 genital swabs from North and South America and Africa, we detected recombinantsworldwide. Common, widely distributed gene UL39 genotypes are parsimoniously explained by an initial >457 basepair (bp) HSV-1 x HSV-2 crossover followed by back-recombination to HSV-2. Blocks of >244 and >539 bp of HSV-1 DNA within genes UL29 and UL30, respectively, have reached near fixation, with a minority of strains retaining sequences we posit as ancestral HSV-2. Our data add to previous in vitroand animal work, implying that in vivo cellular co-infection with HSV-1 and HSV-2 yields viable interspecies recombinants in the natural human host.
  •  
7.
  • Norberg, Peter, 1974, et al. (författare)
  • Published sequences do not support transfer of oseltamivir resistance mutations from avian to human influenza A virus strains
  • 2015
  • Ingår i: Bmc Infectious Diseases. - : Springer Science and Business Media LLC. - 1471-2334. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Tamiflu (oseltamivir phosphate ester, OE) is a widely used antiviral active against influenza A virus. Its active metabolite, oseltamivir carboxylate (OC), is chemically stable and secreted into wastewater treatment plants. OC contamination of natural habitats of waterfowl might induce OC resistance in influenza viruses persistently infecting waterfowl, and lead to transfer of OC-resistance from avian to human influenza. The aim of this study was to evaluate whether such has occurred. Methods: A genomics approach including phylogenetic analysis and probability calculations for homologous recombination was applied on altogether 19,755 neuraminidase (N1 and N2) genes from virus sampled in humans and birds, with and without resistance mutations. Results: No evidence for transfer of OE resistance mutations from avian to human N genes was obtained, and events suggesting recombination between human and avian influenza virus variants could not be traced in the sequence material studied. Conclusions: The results indicate that resistance in influenza viruses infecting humans is due to the selection pressure posed by the global OE administration in humans rather than transfer from avian influenza A virus strains carrying mutations induced by environmental exposure to OC.
  •  
8.
  • Norberg, Peter, 1974, et al. (författare)
  • Recombination of Globally Circulating Varicella-Zoster Virus
  • 2015
  • Ingår i: Journal of Virology. - : American Society for Microbiology. - 0022-538X .- 1098-5514. ; 89:14, s. 7133-7146
  • Tidskriftsartikel (refereegranskat)abstract
    • Varicella-zoster virus (VZV) is a human herpesvirus, which during primary infection typically causes varicella (chicken pox) and establishes lifelong latency in sensory and autonomic ganglia. Later in life, the virus may reactivate to cause herpes zoster (HZ; also known as shingles). To prevent these diseases, a live-attenuated heterogeneous vaccine preparation, vOka, is used routinely in many countries worldwide. Recent studies of another alphaherpesvirus, infectious laryngotracheitis virus, demonstrate that live-attenuated vaccine strains can recombine in vivo, creating virulent progeny. These findings raised concerns about using attenuated herpesvirus vaccines under conditions that favor recombination. To investigate whether VZV may undergo recombination, which is a prerequisite for VZV vaccination to create such conditions, we here analyzed 115 complete VZV genomes. Our results demonstrate that recombination occurs frequently for VZV. It thus seems that VZV is fully capable of recombination if given the opportunity, which may have important implications for continued VZV vaccination. Although no interclade vaccine-wild-type recombinant strains were found, intraclade recombinants were frequently detected in clade 2, which harbors the vaccine strains, suggesting that the vaccine strains have already been involved in recombination events, either in vivo or in vitro during passages in cell culture. Finally, previous partial and complete genomic studies have described strains that do not cluster phylogenetically to any of the five established clades. The additional VZV strains sequenced here, in combination with those previously published, have enabled us to formally define a novel sixth VZV clade. Although genetic recombination has been demonstrated to frequently occur for other human alphaherpesviruses, herpes simplex viruses 1 and 2, only a few ancient and isolated recent recombination events have hitherto been demonstrated for VZV. In the present study, we demonstrate that VZV also frequently undergoes genetic recombination, including strains belonging to the clade containing the vOKA strain.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy