SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nordenström Malin) srt2:(2018)"

Sökning: WFRF:(Nordenström Malin) > (2018)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kaldéus, Tahani, et al. (författare)
  • Insights into the EDC-mediated PEGylation of cellulose nanofibrils and their colloidal stability
  • 2018
  • Ingår i: Carbohydrate Polymers. - : Elsevier. - 0144-8617 .- 1879-1344. ; 181, s. 871-878
  • Tidskriftsartikel (refereegranskat)abstract
    • EDC-mediated coupling has frequently been utilized to poly(ethylene glycol) functionalize (PEGylate) cellulose-based materials, but no work has previously been reported on the direct N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC)-mediated PEGylation of cellulose nanofibrils (CNF). Herein, we report the first study where CNF has been directly sterically stabilized with amine-terminated PEG employing N-hydroxysuccinimide (NHS)-assisted EDC-coupling. This work has shown that this coupling reaction is highly sensitive to the reaction conditions and purification procedures, and hence an optimized coupling protocol was developed in order to achieve a reaction yield. Elemental analysis of the nitrogen content also showed the successful PEGylation. It was also shown that a surprisingly low PEGylation (1%) is sufficient to significantly improve the colloidal stability of the PEGylated samples, which reached dispersion-arrested-state-transitions at higher concentrations than neat CNF. The colloidal stability was preserved with increasing ionic strength, when comparably long polymer chains were grafted, targeting only 1% PEGylation.
  •  
2.
  • Nordenström, Malin, et al. (författare)
  • Superamphiphobic coatings based on liquid-core microcapsules with engineered capsule walls and functionality
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Microcapsules with specific functional properties, related to the capsule wall and core, are highly desired in a number of applications. In this study, hybrid cellulose microcapsules (1.2 ± 0.4 µm in diameter) were prepared by nanoengineering the outer walls of precursor capsules. Depending on the preparation route, capsules with different surface roughness (raspberry or broccoli-like), and thereby different wetting properties, could be obtained. The tunable surface roughness was achieved as a result of the chemical and structural properties of the outer wall of a precursor capsule, which combined with a new processing route allowed in-situ formation of silica nanoparticles (30-40 nm or 70 nm in diameter). By coating glass slides with "broccoli-like" microcapsules (30-40 nm silica nanoparticles), static contact angles above 150° and roll-off angles below 6° were obtained for both water and low surface-tension oil (hexadecane), rendering the substrate superamphiphobic. As a comparison, coatings from raspberry-like capsules were only strongly oleophobic and hydrophobic. The liquid-core of the capsules opens great opportunities to incorporate different functionalities and here hydrophobic superparamagnetic nanoparticles (SPIONs) were encapsulated. As a result, magnetic broccoli-like microcapsules formed an excellent superamphiphobic coating-layer on a curved geometry by simply applying an external magnetic field.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy