SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nordsletten Lars) srt2:(2005-2009)"

Sökning: WFRF:(Nordsletten Lars) > (2005-2009)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Skoglund, Björn, 1975- (författare)
  • Following the mevalonate pathway to bone heal alley
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The mevalonate pathway is an important biosynthetic pathway, found in all cells of virtually all known pro- as well as eukaryotic organisms. This thesis is an investigation into the use of two drugs, originally developed for different applications, but both affecting the mevalonate pathway, in to models of fracture repair.Using two different rodent models of fracture repair, a commonly used cholesterol lowering drug (statin) and two drugs used to treat osteoporosis (bisphosphonate) were applied both systemically as well as locally in order to enhance fracture repair.Papers I and II investigate the potential of simvastatin to improve the healing of femoral fractures in mice. Papers III and IV explore the use of two bisphosphonates to improve early fixation of stainless steel screws into rat bone.The statin simvastatin lead to an increased strength of the healing cellus. The application of bisphosphonates increased early screw fixation.It seems clear that both drugs have uses in orthopaedic applications. One interesting avenue of further research would be to combine the two classes of drugs and see if we can get the benefits while at the same time diminishing the drawbacks.
  •  
2.
  • Östman, Bengt, 1953- (författare)
  • Influence of Oxidative Stress on Muscle and Bone
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Reactive oxygen species (ROS) induce oxidative stress and although are primarily recognized for playing a deleterious biological role, they can be beneficial to cell systems. ROS are extremely short-lived and normally tightly regulated by antioxidant defence systems. Cells react to oxidative stress in different ways, which primarily depends on cell type, stress severity, or both. There is a general limitation in extrapolating to humans conclusions drawn from in vitro and animal studies because of important species-specific differences. Therefore, the general aim of this thesis was to study the influence of oxidative stress on human muscle and bone in vivo. In paper I we presented a one-step HPLC method optimized for the simultaneous determination of purine degradation products in small microdialysis samples. The clinical utility of the method was successfully tested in a patient with traumatic brain injury. In paper II we evaluated microdialysis as an in vivo method to characterize the relative kinetics of ROS-related metabolites in human skeletal muscle exposed to ischaemia-reperfusion. Results indicated that microdialysis was feasible and safe to use in monitoring metabolic events during tourniquet-assisted surgery. In paper III we investigated the association between an oxidative stress marker (urinary 8-iso-PGF2α) and bone mineral density (BMD) and whether α-tocopherol modified the association. The main finding was the negative association between 8-iso-PGF2α and BMD and that the association was further dependent on serum α-tocopherol level. In paper IV we performed a randomized controlled trial to evaluate the influence of Q10 supplementation on exercise performance and metabolites of muscular damage. We did not observe any effects on exercise capacity after 8 weeks of Q10 administration. Nor did we find a significant effect on serum markers related to oxidative stress. In conclusion we have studied the influence of oxidative stress on muscle and bone in vivo in humans. The oxidative stress was triggered by four different causes (trauma, ischemia-reperfusion, ageing, and exercise exhaustion).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy