SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Norkko Alf) srt2:(2015-2019)"

Sökning: WFRF:(Norkko Alf) > (2015-2019)

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Villnäs, Anna, et al. (författare)
  • Changes in macrofaunal biological traits across estuarine gradients : implications for the coastal nutrient filter
  • 2019
  • Ingår i: Marine Ecology Progress Series. - : Inter-Research Science Center. - 0171-8630 .- 1616-1599. ; 622, s. 31-48
  • Tidskriftsartikel (refereegranskat)abstract
    • Benthic macrofaunal communities have a profound impact on organic matter turnover and nutrient cycling in marine sediments. Their activities are of particular importance in the coastal filter, where nutrients and organic matter from land are transformed and/or retained before reaching the open sea. The benthic fauna modify the coastal filter directly (through consumption, respiration, excretion and biomass production) and indirectly (through bioturbation). It is hard to experimentally quantify faunal contribution to the coastal filter over large spatial and temporal scales that encompass significant environmental and biological heterogeneity. However, estimates can be obtained with biological trait analyses. By using benthic biological traits, we explored how the potential contribution of macrofaunal communities to the coastal filter differ between inner and outer sites in an extensive archipelago area and examine the generality of the observed pattern across contrasting coastal areas of the entire Baltic Sea. Estimates of benthic bioturbation, longevity and size (i.e. 'stability') and total energy and nutrient contents differed between coastal areas and inner versus outer sites. Benthic traits indicative of an enhanced nutrient turnover but a decreased capacity for temporal nutrient retention dominated inner sites, while outer sites were often dominated by larger individuals, exhibiting traits that are likely to enhance nutrient uptake and retention. The overarching similarities in benthic trait expression between more eutrophied inner vs. less affected outer coastal sites across the Baltic Sea suggest that benthic communities might contribute in a similar manner to nutrient recycling and retention in the coastal filter over large geographical scales.
  •  
2.
  • Andersen, Jesper H., et al. (författare)
  • Long-term temporal and spatial trends in eutrophication status of the Baltic Sea
  • 2017
  • Ingår i: Biological Reviews. - : Wiley. - 1464-7931 .- 1469-185X. ; 92:1, s. 135-149
  • Tidskriftsartikel (refereegranskat)abstract
    • Much of the Baltic Sea is currently classified as 'affected by eutrophication'. The causes for this are twofold. First, current levels of nutrient inputs (nitrogen and phosphorus) from human activities exceed the natural processing capacity with an accumulation of nutrients in the Baltic Sea over the last 50-100 years. Secondly, the Baltic Sea is naturally susceptible to nutrient enrichment due to a combination of long retention times and stratification restricting ventilation of deep waters. Here, based on a unique data set collated from research activities and long-term monitoring programs, we report on the temporal and spatial trends of eutrophication status for the open Baltic Sea over a 112-year period using the HELCOM Eutrophication Assessment Tool (HEAT 3.0). Further, we analyse variation in the confidence of the eutrophication status assessment based on a systematic quantitative approach using coefficients of variation in the observations. The classifications in our assessment indicate that the first signs of eutrophication emerged in the mid-1950s and the central parts of the Baltic Sea changed from being unaffected by eutrophication to being affected. We document improvements in eutrophication status that are direct consequences of long-term efforts to reduce the inputs of nutrients. The reductions in both nitrogen and phosphorus loads have led to large-scale alleviation of eutrophication and to a healthier Baltic Sea. Reduced confidence in our assessment is seen more recently due to reductions in the scope of monitoring programs. Our study sets a baseline for implementation of the ecosystem-based management strategies and policies currently in place including the EU Marine Strategy Framework Directives and the HELCOM Baltic Sea Action Plan.
  •  
3.
  • Attard, Karl M., et al. (författare)
  • Seasonal ecosystem metabolism across shallow benthic habitats measured by aquatic eddy covariance
  • 2019
  • Ingår i: Limnology and Oceanography Letters. - : Wiley. - 2378-2242. ; 4:3, s. 79-86
  • Tidskriftsartikel (refereegranskat)abstract
    • Shallow benthic habitats are hotspots for carbon cycling and energy flow, but metabolism (primary production and respiration) dynamics and habitat-specific differences remain poorly understood. We investigated daily, seasonal, and annual metabolism in six key benthic habitats in the Baltic Sea using similar to 2900h of in situ aquatic eddy covariance oxygen flux measurements. Rocky substrates had the highest metabolism rates. Habitat-specific annual primary production per m(2) was in the order Fucus vesiculosus canopy>Mytilus trossulus reef>Zostera marina canopy>mixed macrophytes canopy>sands, whereas respiration was in the order M. trossulus>F. vesiculosus>Z. marina>mixed macrophytes> sands>aphotic sediments. Winter metabolism contributed 22-31% of annual rates. Spatial upscaling revealed that benthic habitats drive >90% of ecosystem metabolism in waters <= 5 m depth, highlighting their central role in carbon and nutrient cycling in shallow waters.
  •  
4.
  • Attard, K. M., et al. (författare)
  • Seasonal metabolism and carbon export potential of a key coastal habitat : The perennial canopy-forming macroalga Fucus vesiculosus
  • 2019
  • Ingår i: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 64:1, s. 149-164
  • Tidskriftsartikel (refereegranskat)abstract
    • The important role of macroalgal canopies in the oceanic carbon (C) cycle is increasingly being recognized, but direct assessments of community productivity remain scarce. We conducted a seasonal study on a sublittoral Baltic Sea canopy of the brown alga Fucus vesiculosus, a prominent species in temperate and Arctic waters. We investigated community production on hourly, daily, and seasonal timescales. Aquatic eddy covariance (AEC) oxygen flux measurements integrated similar to 40 m(2) of the seabed surface area and documented considerable oxygen production by the canopy year-round. High net oxygen production rates of up to 35 +/- 9 mmol m(-2) h(-1) were measured under peak irradiance of similar to 1200 mu mol photosynthetically active radiation (PAR) m(-2) s(-1) in summer. However, high rates > 15 mmol m(-2) h(-1) were also measured in late winter (March) under low light intensities < 250 mu mol PAR m(-2) s(-1) and water temperatures of similar to 1 degrees C. In some cases, hourly AEC fluxes documented an apparent release of oxygen by the canopy under dark conditions, which may be due to gas storage dynamics within internal air spaces of F. vesiculosus. Daily net ecosystem metabolism (NEM) was positive (net autotrophic) in all but one of the five measurement campaigns (December). A simple regression model predicted a net autotrophic canopy for two-thirds of the year, and annual canopy NEM amounted to 25 mol O-2 m(-2) yr(-1), approximately six-fold higher than net phytoplankton production. Canopy C export was similar to 0.3 kg C m(-2) yr(-1), comparable to canopy standing biomass in summer. Macroalgal canopies thus represent regions of intensified C assimilation and export in coastal waters.
  •  
5.
  • Bernard, Guillaume, et al. (författare)
  • Quantifying bioturbation across coastal seascapes : Habitat characteristics modify effects of macrofaunal communities
  • 2019
  • Ingår i: Journal of Sea Research. - : Elsevier BV. - 1385-1101 .- 1873-1414. ; 152
  • Tidskriftsartikel (refereegranskat)abstract
    • Bioturbation by benthic macrofauna communities plays a significant role in the setting and maintenance of important ecosystem functions and the delivery of associated ecosystem services. We investigated the context dependence of bioturbation performed by natural benthic communities in the coastal northern Baltic Sea by quantifying three bioturbation metrics (particle mixing intensity, surface sediment reworking and bioturbation depth) across 18 sites ranging from cohesive muddy sediments to non-cohesive coarse sands, while accounting for the complexity of natural communities and habitat characteristics. We identified two distinct patterns of bioturbation; in fine sediments bioturbation rates were highly variable and in coarse sediments bioturbation rates were less variable and characterized by lower maximal values. Using distance-based linear multiple regressions, we found that 75.5% of the variance in bioturbation rates in fine sediment could be explained by key functional groups/species abundance and/or biomass (i.e. biomass of the gallery-diffusors and abundances of biodiffusors, surface modifiers, conveyors and gallery diffusors, respectively). In coarse sediment, 47.8% of the variance in bioturbation rates could be explained by a combination of environmental factors (grain size, organic matter content, buried plant material) and faunal functional groups, although fauna alone explained only 13% of this variance. Bioturbation in fine sediments was therefore more predictable based on the composition of benthic fauna. In coarse sediment, the bioturbation activities of benthic fauna were strongly modified by habitat characteristics (including the presence of buried plant material, sediment organic content and grain size) whereas in fine sediments this was not the case. Our results therefore highlight that variability in spatial patterns of bioturbation is a result of complex relationships between macrofauna community structure, sediment type and other habitat characteristics, likely modifying bioturbation performance of individual fauna.
  •  
6.
  • Gammal, Johanna, et al. (författare)
  • Environmental Context Mediates Biodiversity–Ecosystem Functioning Relationships in Coastal Soft-sediment Habitats
  • 2019
  • Ingår i: Ecosystems (New York. Print). - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 22:1, s. 137-151
  • Tidskriftsartikel (refereegranskat)abstract
    • The ongoing loss of biodiversity and global environmental changes severely affect the structure of coastal ecosystems. Consequences, in terms of ecosystem functioning, are, however, difficult to predict because the context dependency of the biodiversity–ecosystem function relationships within these heterogeneous seascapes is poorly understood. To assess the effects of biological and environmental factors in mediating ecosystem functioning (nutrient cycling) in different natural habitats, intact sediment cores were collected at 18 sites on a grain size gradient from coarse sand to silt, with varying organic matter content and vegetation. To assess ecosystem functioning, solute fluxes (O2, NH4+, PO43−, Si) across the sediment–water interface were measured. The macrofaunal communities changed along the grain size gradient with higher abundance, biomass and number of species in coarser sediments and in habitats with more vegetation. Across the whole gradient, the macrofauna cumulatively accounted for 25% of the variability in the multivariate solute fluxes, whereas environmental variables cumulatively accounted for 20%. Only the biomass and abundance of a few of the most dominant macrofauna species, not the number of species, appeared to contribute significantly to the nutrient recycling processes. Closer analyses of different sediment types (grouped into coarse, medium and fine sediment) showed that the macrofauna was an important predictor in all sediment types, but had the largest impact in fine and medium sediments. The results imply that even if the ecosystem functioning is similar in different sediment types, the underpinning mechanisms are different, which makes it challenging to generalize patterns of functioning across the heterogeneous shallow coastal zones.
  •  
7.
  • Humborg, Christoph, et al. (författare)
  • High Emissions of Carbon Dioxide and Methane From the Coastal Baltic Sea at the End of a Summer Heat Wave
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • The summer heat wave in 2018 led to the highest recorded water temperatures since 1926 - up to 21 degrees C - in bottom coastal waters of the Baltic Sea, with implications for the respiration patterns in these shallow coastal systems. We applied cavity ring-down spectrometer measurements to continuously monitor carbon dioxide (CO2) and methane (CH4) surface-water concentrations, covering the coastal archipelagos of Sweden and Finland and the open and deeper parts of the Northern Baltic Proper. This allowed us to (i) follow an upwelling event near the Swedish coast leading to elevated CO2 and moderate CH 4 outgassing, and (ii) to estimate CH4 sources and fluxes along the coast by investigating water column inventories and air-sea fluxes during a storm and an associated downwelling event. At the end of the heat wave, before the storm event, we found elevated CO2 (1583 mu atm) and CH4 (70 nmol/L) concentrations. During the storm, a massive CO2 sea-air flux of up to 274 mmol m(-2) d(-1) was observed. While water-column CO2 concentrations were depleted during several hours of the storm, CH4 concentrations remained elevated. Overall, we found a positive relationship between CO2 and CH4 wind-driven sea-air fluxes, however, the highest CH4 fluxes were observed at low winds whereas highest CO2 fluxes were during peak winds, suggesting different sources and processes controlling their fluxes besides wind. We applied a box-model approach to estimate the CH4 supply needed to sustain these elevated CH4 concentrations and the results suggest a large source flux of CH4 to the water column of 2.5 mmol m(-2) d(-1). These results are qualitatively supported by acoustic observations of vigorous and widespread outgassing from the sediments, with flares that could be traced throughout the water column penetrating the pycnocline and reaching the sea surface. The results suggest that the heat wave triggered CO2 and CH4 fluxes in the coastal zones that are comparable with maximum emission rates found in other hot spots, such as boreal and arctic lakes and wetlands. Further, the results suggest that heat waves are as important for CO2 and CH4 sea-air fluxes as the ice break up in spring.
  •  
8.
  • Kauppi, L., et al. (författare)
  • Increasing densities of an invasive polychaete enhance bioturbation with variable effects on solute fluxes
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Bioturbation is a key process affecting nutrient cycling in soft sediments. The invasive polychaete genus Marenzelleria spp. has established successfully throughout the Baltic Sea increasing species and functional diversity with possible density-dependent effects on bioturbation and associated solute fluxes. We tested the effects of increasing density of M. arctia, M. viridis and M. neglecta on bioturbation and solute fluxes in a laboratory experiment. Benthic communities in intact sediment cores were manipulated by adding increasing numbers of Marenzelleria spp. The results showed that Marenzelleria spp. in general enhanced all bioturbation metrics, but the effects on solute fluxes varied depending on the solute, on the density and species identity of Marenzelleria, and on the species and functional composition of the surrounding community. M. viridis and M. neglecta were more important in predicting variation in phosphate and silicate fluxes, whereas M. arctia had a larger effect on nitrogen cycling. The complex direct and indirect pathways indicate the importance of considering the whole community and not just species in isolation in the experimental studies. Including these interactions provides a way forward regarding our understanding of the complex ecosystem effects of invasive species.
  •  
9.
  • Kauppi, L., et al. (författare)
  • Seasonal population dynamics of the invasive polychaete genus Marenzelleria spp. in contrasting soft-sediment habitats
  • 2018
  • Ingår i: Journal of Sea Research. - : Elsevier BV. - 1385-1101 .- 1873-1414. ; 131, s. 46-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Three species of the invasive polychaete genus Marenzelleria are among the dominant benthic taxa in many, especially deeper, areas in the Baltic Sea. The population dynamics of the polychaetes in the Baltic are, however, still largely unknown. We conducted monthly samplings of the benthic communities and environmental parameters at five sites with differing depths and sediment characteristics in the northern Baltic Sea (59 degrees 50.896', 23 degrees 15.092') to study the population dynamics, productivity and growth of Marenzelleria spp. from April 2013 to June 2014. The species of Marenzelleria occurring at the study sites were identified by genetic analyses. At the deepest site (33 m) only M. arctia was present, while all three species were found at the shallower, muddy sites (up to 20 m depth). At the shallow (6 m) sandy site only M. viridis and M. neglecta occurred. The sites differed in the seasonal dynamics of the Marenzelleria spp. population, reflecting the different species identities. The muddy sites up to 20 m depth showed clear seasonal dynamics, with the population practically disappearing by winter, whereas more stable populations occurred at the deepest site and at the sandy site. The highest density, biomass and production were observed at the 20 m deep, organic-rich muddy site where all three species recruited. The seasonally very high densities are likely to have important consequences for organic matter processing, and species interactions at these sites. The observed high productivity of the populations has possibly facilitated their establishment, and considerably increased secondary production in especially the deeper areas.
  •  
10.
  • Kauppi, L., et al. (författare)
  • Seasonal variability in ecosystem functions : quantifying the contribution of invasive species to nutrient cycling in coastal ecosystems
  • 2017
  • Ingår i: Marine Ecology Progress Series. - : Inter-Research Science Center. - 0171-8630 .- 1616-1599. ; 572, s. 193-207
  • Tidskriftsartikel (refereegranskat)abstract
    • Benthic ecosystems at temperate and high latitudes experience marked seasonal variation in the environmental factors affecting nutrient remineralization processes both directly and indirectly through their effects on the benthic communities. The invasive polychaete genus Marenzelleria represents new functionality in Baltic Sea sediments through its deep burrowing and extensive gallery formation, thus possibly greatly affecting benthic oxygen and nutrient fluxes. We assessed the seasonal contribution of Marenzelleria spp. to fluxes of solutes in monthly field measurements at 2 sites, 10 and 33 m deep, in the northern Baltic Proper over 1 yr. In general, the fluxes of inorganic nutrients and oxygen were higher during summer than during winter, and the seasonal variation was more pronounced at the deeper, more biologically active site. By using variation partitioning, we were able to demonstrate that Marenzelleria and other macrofauna could account for up to 92% of the variation in the fluxes depending on the site and season. Fauna was the most important in predicting the fluxes in spring when the sediment organic content and the abundance of juvenile Marenzelleria spp. were highest, while during e.g. winter, the influence of Marenzelleria spp., even though abundant, on solute fluxes was negligible. The results from this study have implications for management, and, importantly, for the modelling of nutrient budgets often based on values from studies conducted during the summer period only, thus possibly greatly miscalculating the annual nutrient fluxes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31
Typ av publikation
tidskriftsartikel (28)
forskningsöversikt (2)
bokkapitel (1)
Typ av innehåll
refereegranskat (30)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Norkko, Alf (31)
Villnäs, Anna (6)
Rodil, Iván F. (4)
Gustafsson, Camilla (3)
Westerbom, Mats (3)
Gårdmark, Anna (2)
visa fler...
Blenckner, Thorsten (2)
Carstensen, Jacob (2)
Gustafsson, Bo G. (2)
Josefson, Alf B. (2)
Viitasalo, Markku (2)
Attard, Karl M. (2)
Glud, Ronnie N. (2)
Pettersson, H (1)
Bonaglia, Stefano (1)
Nascimento, Francisc ... (1)
Olsson, Jens (1)
Winder, Monika (1)
Andersen, Jesper H. (1)
Jansson, Anna (1)
Agrenius, Stefan, 19 ... (1)
Magnusson, Marina (1)
Harris, R (1)
Danovaro, Roberto (1)
Florin, Ann-Britt (1)
Wikner, Johan, 1961- (1)
Brüchert, Volker (1)
Joensuu, M (1)
Fleming-Lehtinen, Vi ... (1)
Conley, Daniel (1)
Merila, Juha (1)
Mörth, Carl-Magnus (1)
Humborg, Christoph (1)
Sokolov, Alexander (1)
Lindgren, Fredrik, 1 ... (1)
Niiranen, Susa (1)
Jakobsson, Martin (1)
Dromph, Karsten (1)
Murray, Ciarán (1)
Wennhage, Håkan (1)
Bernard, G (1)
Berg, Peter (1)
Angove, Charlotte (1)
Weigel, Benjamin (1)
Kautsky, Lena (1)
Asmala, Eero (1)
Krause-Jensen, Dorte (1)
Reader, Heather (1)
Staehr, Peter A. (1)
Boström, Christoffer (1)
visa färre...
Lärosäte
Stockholms universitet (31)
Sveriges Lantbruksuniversitet (4)
Lunds universitet (2)
Göteborgs universitet (1)
Umeå universitet (1)
Chalmers tekniska högskola (1)
visa fler...
Karolinska Institutet (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (31)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (31)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy