SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Noterdaeme P.) srt2:(2005-2009)"

Sökning: WFRF:(Noterdaeme P.) > (2005-2009)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lamalle, P. U., et al. (författare)
  • Expanding the operating space of ICRF on JET with a view to ITER
  • 2006
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 46:2, s. 391-400
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports on ITER-relevant ion cyclotron resonance frequency (ICRF) physics investigated on JET in 2003 and early 2004. Minority heating of helium three in hydrogen plasmas-(He-3)H-was systematically explored by varying the 3 He concentration and the toroidal phasing of the antenna arrays. The best heating performance (a maximum electron temperature of 6.2 keV with 5 MW of ICRF power) was obtained with a preferential wave launch in the direction of the plasma current. A clear experimental demonstration was made of the sharp and reproducible transition to the mode conversion heating regime when the 3 He concentration increased above similar to 2%. In the latter regime the best heating performance (a maximum electron temperature of 8 keV with 5 MW of ICRF power) was achieved with dipole array phasing, i.e. a symmetric antenna power spectrum. Minority heating of deuterium in hydrogen plasmas-(D)H-was also investigated but was found inaccessible because this scenario is too sensitive to impurity ions with Z/A = 1/2 such as C6+, small amounts of which directly lead into the mode conversion regime. Minority heating of up to 3% of tritium in deuterium plasmas was systematically investigated during the JET trace tritium experimental campaign (TTE). This required operating JET at its highest possible magnetic field (3.9 to 4 T) and the ICRF system at its lowest frequency (23 MHz). The interest of this scenario for ICRF heating at these low concentrations and its efficiency at boosting the suprathermal neutron yield were confirmed, and the measured neutron and gammay ray spectra permit interesting comparisons with advanced ICRF code simulations. Investigations of finite Larmor radius effects on the RF-induced high-energy tails during second harmonic (omega = 2 omega(c)) heating of a hydrogen minority in D plasmas clearly demonstrated a strong decrease in the RF diffusion coefficient at proton energies similar to 1 MeV in agreement with theoretical expectations. Fast wave heating and current drive experiments in deuterium plasmas showed effective direct electron heating with dipole phasing of the antennas, but only small changes of the central plasma current density were observed with the directive phasings, in particular at low single pass damping. New investigations of the heating efficiency of ICRF antennas confirmed its strong dependence on the parallel wavenumber spectrum. Advances in topics of a more technological nature are also summarized: ELM studies using fast RF measurements, the successful experimental demonstration of a new ELM-tolerant antenna matching scheme and technical enhancements planned on the JET ICRF system for 2006, they being equally strongly driven by the preparation for ITER.
  •  
2.
  • Lamalle, P.U, et al. (författare)
  • Expanding the operating space of ICRF on JET with a view to ITER
  • 2006
  • Ingår i: Nucl. Fusion. ; 46, s. 391-
  • Tidskriftsartikel (refereegranskat)abstract
    • Mercury (Hg) has been used for millennia in many applications, primarily in artisanal mining and as an electrode in the chlor–alkali industry. It is anthropogenically emitted as a pollutant from coal fired power plants and naturally emitted, primarily from volcanoes. Its unique chemical characteristics enable global atmospheric transport and it is deposited after various processes, ultimately ending up in one of its final sinks, such as incorporated into deep sediment or bioaccumulated, primarily in the marine environment. All forms of Hg have been established as toxic, and there have been no noted biological benefits from the metal.Throughout time, there have been notable incidents of Hg intoxication documented, and the negative health effects have been documented to those chronically or acutely exposed. Today, exposure to Hg is largely diet or occupationally dependent, however, many are exposed to Hg from their amalgam fillings. This paper puts a tentative monetary value on Hg polluted food sources in the Arctic, where local, significant pollution sources are limited, and relates this to costs for strategies avoiding Hg pollution and to remediation costs of contaminated sites in Sweden and Japan. The case studies are compiled to help policy makers and the public to evaluate whether the benefits to the global environment from banning Hg and limiting its initial emission outweigh the benefits from its continued use or lack of control of Hg emissions. The cases we studied are relevant for point pollution sources globally and their remediation costs ranged between 2500 and 1.1 million US$ kg−1 Hg isolated from the biosphere. Therefore, regulations discontinuing mercury uses combined with extensive flue gas cleaning for all power plants and waste incinerators is cost effective.
  •  
3.
  • Mayoral, M. L., et al. (författare)
  • Hydrogen plasmas with ICRF inverted minority and mode conversion heating regimes in the JET tokamak
  • 2006
  • Ingår i: Nuclear Fusion. - 0029-5515 .- 1741-4326. ; 46:7, s. S550-S563
  • Tidskriftsartikel (refereegranskat)abstract
    • During the initial operation of the International Thermonuclear Experimental Reactor (ITER), it is envisaged that activation will be minimized by using hydrogen (H) plasmas where the reference ion cyclotron resonance frequency (ICRF) heating scenarios rely on minority species such as helium (He-3) or deuterium (D). This paper firstly describes experiments dedicated to the study of He-3 heating in H plasmas with a sequence of discharges in which 5 MW of ICRF power was reliably coupled and the He-3 concentration, controlled in real-time, was varied from below 1% up to 10%. The minority heating (MH) regime was observed at low concentrations (up to 2%). Energetic tails in the He-3 ion distributions were observed with effective temperatures up to 300 keV and bulk electron temperatures up to 6 keV. At around 2%, a sudden transition was reproducibly observed to the mode conversion regime, in which the ICRF fast wave couples to short wavelength modes, leading to efficient direct electron heating and bulk electron temperatures up to 8 keV. Secondly, experiments performed to study D minority ion heating in H plasmas are presented. This MH scheme proved much more difficult since modest quantities of carbon
  •  
4.
  • Mayoral, M L, et al. (författare)
  • ICRF heating for the non-activated phase of ITER : From inverted minority to mode conversion regime
  • 2005
  • Ingår i: Radio Frequency Power in Plasmas. ; , s. 122-129
  • Konferensbidrag (refereegranskat)abstract
    • In the initial phase of ITER H plasmas will be used in order to avoid activating the machine. The reference ICRF heating scenarios rely on minority species such as Helium (3 He) or deuterium (D). These schemes' distinctive feature comes from the presence of the fast magnetosonic wave ion-ion hybrid resonance/cut-off pair, between the antennas and the minority cyclotron layer. In order to document these unusual heating schemes, ICRF experiments were carried out recently on JET. First, the use of He-3 ions in H plasmas was investigated with a sequence of discharges in which 5 MW of ICRF power was coupled to the plasma and the 3 He concentration was varied from below 1% up to 10%. The inverted minority heating regime was observed at low concentrations (up to similar to 2%). Energetic tails in the 3 He distribution were observed with effective temperatures up to 300 keV and central electron temperatures up to 6 keV. At around 2%, a sudden transition was reproducibly observed to the mode conversion regime, in which the ICRF fast wave couples to short wavelength modes, leading to efficient direct electron heating and central electron temperature up to 8 keV. All these experiments systematically used power modulation techniques to assess the radial profiles of the wave absorption by the electrons. Secondly, experiments to study the ICRF heating of D minority ions in H were performed. This heating scheme proved much more difficult since modest quantities of C6+ impurity, which has the same Z/A ratio than die D minority ions, led us directly into the mode conversion regime. This effect preventing any absorption by D ions at minority cyclotron layer, could make die (D)H scenario not suitable for the non-active phase of ITER.
  •  
5.
  • Salmi, A., et al. (författare)
  • JET experiments to assess the clamping of the fast ion energy distribution during ICRF heating due to finite Larmor radius effects
  • 2006
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 48:6, s. 717-726
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments have been performed on the JET tokamak with 2nd harmonic ion cyclotron resonance heating (ICRH) of hydrogen in deuterium plasmas to assess the role of finite Larmor radius (FLR) effects on the resonant ion distribution function. More specifically, the clamping of high-energy resonant particle distribution due to weak wave-particle interaction at high energy is studied. The distributions of ICRH heated hydrogen ions have been measured with a high-energy neutral particle analyser in the range of 0.29-1.1 MeV. By changing the electron density the energy E*, around which the wave-particle interaction becomes weak, is varied. The dependence of the ion distribution on E* is experimentally observed for a number of discharges and FLR effects are clearly seen to affect the high energy tail shape. Experiments have been analysed with the combination of ICRH modelling codes PION and FIDO, including FLR effects, and good agreement with measurements have been found.
  •  
6.
  • Santala, M. I. K., et al. (författare)
  • Proton-triton nuclear reaction in ICRF heated plasmas in JET
  • 2006
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 48:8, s. 1233-1253
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast protons can react with tritons in an endothermic nuclear reaction which can act as a source of neutrons in magnetically confined fusion plasmas. We have performed an experiment to systematically study this reaction in low tritium concentration (approximate to 1%) plasmas in the Joint European Torus. A linear dependence is found between excess neutron rate and tritium concentration when the DT fusion rate is low. We discuss the properties of the neutron emission, including anisotropy, from the proton-triton reaction in a fusion reactor environment and derive simple models for the calculation of the neutron yield from this reaction in terms of tritium density, fast ion temperature and fast ion energy content.
  •  
7.
  • Hellsten, Torbjörn, et al. (författare)
  • Fast wave current drive in JET ITB-plasma
  • 2005
  • Ingår i: AIP Conference Proceedings. - : AIP. - 0094-243X. ; , s. 273-278
  • Konferensbidrag (refereegranskat)abstract
    • Fast wave current drive has been performed in JET plasmas with internal transport barriers, ITBs, and strongly reversed magnetic shear. Although the current drive efficiency of the power absorbed on the electrons is fairly high, only small effects are seen in the central current density. The main reasons are the parasitic absorption of RF power, the strongly inductive nature of the plasma and the interplay between the fast wave driven current and bootstrap current. The direct electron heating in the FWCD experiments is found to be strongly degraded compared to that with the dipole phasing.
  •  
8.
  •  
9.
  • Mantsinen, M. J., et al. (författare)
  • Fast ion distributions driven by polychromatic ICRF waves on JET
  • 2005
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 47:9, s. 1439-1457
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments have been carried out on the JET tokamak to investigate fast He-3 and hydrogen minority ion populations accelerated by ion cyclotron range of frequencies (ICRF) waves launched with multiple frequencies (i.e. up to four frequencies separated by up to approximate to 15%). This 'polychromatic' heating is compared with single-frequency, 'monochromatic', ICRF heating of reference discharges with similar power levels. Information on the fast ion populations is provided by two-dimensional gamma-ray emission tomography and the measurements are compared with numerical modelling. Polychromatic heating with resonances in the plasma centre (R-res approximate to R-0) and on the low magnetic-field side (LFS) (R-res > R-0) is found to produce predominantly high-energy standard trapped ions, while resonances on the high magnetic-field side (R-res < R-0) increase the fraction of high-energy passing ions. Monochromatic heating with a central resonance produces stronger gamma-ray emission with the maximum emission in the midplane close to, and on the LFS of, the resonance, in agreement with the calculated radial distribution of fast ion orbits. Both the fast ion tail temperature and energy content are found to be lower with polychromatic waves. Polychromatic ICRF heating has the advantage of producing smaller-amplitude and shorter-period sawteeth, consistent with a lower fast ion pressure inside the q = 1 surface, and higher ion to electron temperature ratios.
  •  
10.
  • Eriksson, L. G., et al. (författare)
  • On ion cyclotron current drive for sawtooth control
  • 2006
  • Ingår i: Nuclear Fusion. - 0029-5515 .- 1741-4326. ; 46:10, s. S951-S964
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments using ion cyclotron current drive (ICCD) to control sawteeth are presented. In particular, discharges demonstrating shortening of fast ion induced long sawteeth reported in (Eriksson et al 2004 Phys. Rev. Lett. 92 235004) by ICCD have been analysed in detail. Numerical simulations of the ICCD driven currents are shown to be consistent with the experimental observations. They support the hypothesis that an increase in the magnetic shear, due to the driven current, at the surface where the safety factor is unity was the critical factor for the shortening of the sawteeth. In view of the potential utility of ICCD, the mechanisms for the current drive have been further investigated experimentally. This includes the influence of the averaged energy of the resonating ions carrying the current and the spectrum of the launched waves. The results of these experiments are discussed in the light of theoretical considerations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy