SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Novikova Liudmila N.) srt2:(2010-2014)"

Sökning: WFRF:(Novikova Liudmila N.) > (2010-2014)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jonsson, Samuel, et al. (författare)
  • Effect of delayed peripheral nerve repair on nerve regeneration, Schwann cell function and target muscle recovery
  • 2013
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 8:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite advances in surgical techniques for peripheral nerve repair, functional restitution remains incomplete. The timing of surgery is one factor influencing the extent of recovery but it is not yet clearly defined how long a delay may be tolerated before repair becomes futile. In this study, rats underwent sciatic nerve transection before immediate (0) or 1, 3, or 6 months delayed repair with a nerve graft. Regeneration of spinal motoneurons, 13 weeks after nerve repair, was assessed using retrograde labeling. Nerve tissue was also collected from the proximal and distal stumps and from the nerve graft, together with the medial gastrocnemius (MG) muscles. A dramatic decline in the number of regenerating motoneurons and myelinated axons in the distal nerve stump was observed in the 3- and 6-months delayed groups. After 3 months delay, the axonal number in the proximal stump increased 2-3 folds, accompanied by a smaller axonal area. RT-PCR of distal nerve segments revealed a decline in Schwann cells (SC) markers, most notably in the 3 and 6 month delayed repair samples. There was also a progressive increase in fibrosis and proteoglycan scar markers in the distal nerve with increased delayed repair time. The yield of SC isolated from the distal nerve segments progressively fell with increased delay in repair time but cultured SC from all groups proliferated at similar rates. MG muscle at 3- and 6-months delay repair showed a significant decline in weight (61% and 27% compared with contra-lateral side). Muscle fiber atrophy and changes to neuromuscular junctions were observed with increased delayed repair time suggestive of progressively impaired reinnervation. This study demonstrates that one of the main limiting factors for nerve regeneration after delayed repair is the distal stump. The critical time point after which the outcome of regeneration becomes too poor appears to be 3-months.
  •  
2.
  • Karalija, Amar, et al. (författare)
  • Neuroprotective Effects of N-Acetyl-Cysteine and Acetyl-L-Carnitine after Spinal Cord Injury in Adult Rats
  • 2012
  • Ingår i: PLOS ONE. - San Fransisco : Public library of Science. - 1932-6203. ; 7:7, s. e41086-
  • Tidskriftsartikel (refereegranskat)abstract
    • Following the initial acute stage of spinal cord injury, a cascade of cellular and inflammatory responses will lead to progressive secondary damage of the nerve tissue surrounding the primary injury site. The degeneration is manifested by loss of neurons and glial cells, demyelination and cyst formation. Injury to the mammalian spinal cord results in nearly complete failure of the severed axons to regenerate. We have previously demonstrated that the antioxidants N-acetyl-cysteine (NAC) and acetyl-L-carnitine (ALC) can attenuate retrograde neuronal degeneration after peripheral nerve and ventral root injury. The present study evaluates the effects of NAC and ALC on neuronal survival, axonal sprouting and glial cell reactions after spinal cord injury in adult rats. Tibial motoneurons in the spinal cord were pre-labeled with fluorescent tracer Fast Blue one week before lumbar L5 hemisection. Continuous intrathecal infusion of NAC (2.4 mg/day) or ALC (0.9 mg/day) was initiated immediately after spinal injury using Alzet 2002 osmotic minipumps. Neuroprotective effects of treatment were assessed by counting surviving motoneurons and by using quantitative immunohistochemistry and Western blotting for neuronal and glial cell markers 4 weeks after hemisection. Spinal cord injury induced significant loss of tibial motoneurons in L4-L6 segments. Neuronal degeneration was associated with decreased immunostaining for microtubular-associated protein-2 (MAP2) in dendritic branches, synaptophysin in presynaptic boutons and neurofilaments in nerve fibers. Immunostaining for the astroglial marker GFAP and microglial marker OX42 was increased. Treatment with NAC and ALC rescued approximately half of the motoneurons destined to die. In addition, antioxidants restored MAP2 and synaptophysin immunoreactivity. However, the perineuronal synaptophysin labeling was not recovered. Although both treatments promoted axonal sprouting, there was no effect on reactive astrocytes. In contrast, the microglial reaction was significantly attenuated. The results indicate a therapeutic potential for NAC and ALC in the early treatment of traumatic spinal cord injury.
  •  
3.
  • Kingham, Paul J, et al. (författare)
  • Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair
  • 2014
  • Ingår i: Stem Cells and Development. - : Mary Ann Liebert Inc. - 1547-3287 .- 1557-8534. ; 23:7, s. 741-754
  • Tidskriftsartikel (refereegranskat)abstract
    • In future, adipose-derived stem cells (ASC) might be used to treat neurological disorders. In this study, the neurotrophic and angiogenic properties of human ASC were evaluated, and their effects in a peripheral nerve injury model were determined. In vitro growth factor stimulation of the cells resulted in increased secretion of brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), vascular endothelial growth factor-A (VEGF-A), and angiopoietin-1 proteins. Conditioned medium from stimulated cells increased neurite outgrowth of dorsal root ganglia (DRG) neurons. Similarly, stimulated cells showed an enhanced ability to induce capillary-like tube formation in an in vitro angiogenesis assay. ASC were seeded into a fibrin conduit that was used to bridge a 10 mm rat nerve gap. After 2 weeks, the animals treated with control or stimulated ASC showed an enhanced axon regeneration distance. Stimulated cells evoked more total axon growth. Analysis of regeneration and apoptosis-related gene expression showed that both ASC and stimulated ASC enhanced GAP-43 and activating transcription factor 3 (ATF-3) expression in the spinal cord and reduced c-jun expression in the DRG. Caspase-3 expression in the DRG was reduced by stimulated ASC. Both ASC and stimulated ASC also increased the vascularity of the fibrin nerve conduits. Thus, ASC produce functional neurotrophic and angiogenic factors, creating a more desirable microenvironment for nerve regeneration.
  •  
4.
  • Kolar, Mallappa K, et al. (författare)
  • The therapeutic effects of human adipose derived stem cells in a rat cervical spinal cord injury model
  • 2014
  • Ingår i: Stem Cells and Development. - : Mary Ann Liebert. - 1547-3287 .- 1557-8534. ; 23:14, s. 1659-1674
  • Tidskriftsartikel (refereegranskat)abstract
    • Spinal cord injury triggers a cascade of degenerative changes leading to cell death and cavitation. Severed axons fail to regenerate across the scar tissue and are only capable of limited sprouting. In this study we investigated the effects of adult human adipose derived stem cells (ASC) on axonal regeneration following transplantation into the injured rat cervical spinal cord. ASC did not induce activation of astrocytes in culture and supported neurite outgrowth from adult rat sensory DRG neurons. After transplantation into the lateral funiculus 1mm rostral and caudal to the cervical C3-C4 hemisection, ASC continued to express BDNF, VEGF and FGF-2 for 3 weeks but only in animals treated with cyclosporine A. Transplanted ASC stimulated extensive ingrowth of 5HT-positive raphaespinal axons into the trauma zone with some terminal arborisations reaching the caudal spinal cord. In addition, ASC induced sprouting of raphaespinal terminals in C2 contralateral ventral horn and C6 ventral horn on both sides. Transplanted cells also changed the structure of the lesion scar with numerous astrocytic processes extended into the middle of the trauma zone in a chain-like pattern and in close association with regenerating axons. The density of the astrocytic network was also significantly decreased. Although the transplanted cells had no effect on the density of capillaries around the lesion site, the activity of OX42-positive microglial cells was markedly reduced. However, ASC did not support recovery of forelimb function. The results suggest that transplanted ASC can modify the structure of the glial scar and stimulate axonal sprouting.
  •  
5.
  • McGrath, Aleksandra M, et al. (författare)
  • BD™ PuraMatrix™ peptide hydrogel seeded with Schwann cells for peripheral nerve regeneration
  • 2010
  • Ingår i: Brain Research Bulletin. - : Elsevier BV. - 0361-9230 .- 1873-2747. ; 83:5, s. 207-213
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigated the effects of a membrane conduit filled with a synthetic matrix BD™ PuraMatrix™ peptide (BD) hydrogel and cultured Schwann cells on regeneration after peripheral nerve injury in adult rats. After sciatic axotomy, a 10mm gap between the nerve stumps was bridged using ultrafiltration membrane conduits filled with BD hydrogel or BD hydrogel containing Schwann cells. In control experiments, the nerve defect was bridged using either membrane conduits with alginate/fibronectin hydrogel or autologous nerve graft. Axonal regeneration within the conduit was assessed at 3 weeks and regeneration of spinal motoneurons and recovery of muscle weight evaluated at 16 weeks postoperatively. Schwann cells survived in the BD hydrogel both in culture and after transplantation into the nerve defect. Regenerating axons grew significantly longer distances within the conduits filled with BD hydrogel when compared with the alginate/fibronectin hydrogel and alginate/fibronectin with Schwann cells. Addition of Schwann cells to the BD hydrogel considerably increased regeneration distance with axons crossing the injury gap and entering into the distal nerve stump. The conduits with BD hydrogel showed a linear alignment of nerve fibers and Schwann cells. The number of regenerating motoneurons and recovery of the weight of the gastrocnemius muscle was inferior in BD hydrogel and alginate/fibronectin groups compared with nerve grafting. Addition of Schwann cells did not improve regeneration of motoneurons or muscle recovery. The present results suggest that BD hydrogel with Schwann cells could be used within biosynthetic conduits to increase the rate of axonal regeneration across a nerve defect.
  •  
6.
  • McGrath, Aleksandra M, et al. (författare)
  • Fibrin conduit supplemented with human mesenchymal stem cells and immunosuppressive treatment enhances regeneration after peripheral nerve injury
  • 2012
  • Ingår i: Neuroscience Letters. - : Elsevier. - 0304-3940 .- 1872-7972. ; 516:2, s. 171-176
  • Tidskriftsartikel (refereegranskat)abstract
    • To address the need for the development of bioengineered replacement of a nerve graft, a novel two component fibrin glue conduit was combined with human mesenchymal stem cells (MSC) and immunosupressive treatment with cyclosporine A. The effects of MSC on axonal regeneration in the conduit and reaction of activated macrophages were investigated using sciatic nerve injury model. A 10mm gap in the sciatic nerve of a rat was created and repaired either with fibrin glue conduit containing diluted fibrin matrix or fibrin glue conduit containing fibrin matrix with MSC at concentration of 80×10(6)cells/ml. Cells were labeled with PKH26 prior to transplantation. The animals received daily injections of cyclosporine A. After 3 weeks the distance of regeneration and area occupied by regenerating axons and ED1 positives macrophages was measured. MSC survived in the conduit and enhanced axonal regeneration only when transplantation was combined with cyclosporine A treatment. Moreover, addition of cyclosporine A to the conduits with transplanted MSC significantly reduced the ED1 macrophage reaction.
  •  
7.
  • Novikova, Liudmila N, et al. (författare)
  • Efficacy of olfactory ensheathing cells to support regeneration after spinal cord injury is influenced by method of culture preparation
  • 2011
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 229:1, s. 132-142
  • Tidskriftsartikel (refereegranskat)abstract
    • Olfactory ensheathing cells (OEC) have been shown to stimulate regeneration, myelination and functional recovery in different spinal cord injury models. However, recent reports from several laboratories have challenged this treatment strategy. The discrepancy in results could be attributed to many factors including variations in culture protocols. The present study investigates whether the differences in culture preparation could influence neuroprotective and growth-promoting effects of OEC after transplantation into the injured spinal cord. Primary OEC cultures were purified using method of differential cell adhesion (a-OEC) or separated with immunomagnetic beads (b-OEC). After cervical C4 hemisection in adult rats, short-term (3weeks) or long-term (7weeks) cultured OEC were transplanted into the lateral funiculus at 1mm rostral and caudal to the transection site. At 3-8weeks after transplantation, labeled OEC were mainly found in the injection sites and in the trauma zone. Short-term cultured a-OEC supported regrowth of rubrospinal, raphaespinal and CGRP-positive fibers, and attenuated retrograde degeneration in the red nucleus. Short-term cultured b-OEC failed to promote axonal regrowth but increased the density of rubrospinal axons within the dorsolateral funiculus and provided significant neuroprotection for axotomized rubrospinal neurons. In addition, short-term cultured OEC attenuated sprouting of rubrospinal terminals. In contrast, long-term cultured OEC neither enhanced axonal growth nor prevented retrograde cell death. The results suggest that the age of OEC in culture and the method of cell purification could affect the efficacy of OEC to support neuronal survival and regeneration after spinal cord injury.
  •  
8.
  • Novikova, Liudmila N, et al. (författare)
  • Neuroprotective and growth-promoting effects of bone marrow stromal cells after cervical spinal cord injury in adult rats
  • 2011
  • Ingår i: Cytotherapy. - : Elsevier BV. - 1465-3249 .- 1477-2566. ; 13:7, s. 873-887
  • Tidskriftsartikel (refereegranskat)abstract
    • Background aims. Bone marrow stromal cells (BMSC) have been shown to provide neuroprotection after transplantation into the injured central nervous system. The present study investigated whether adult rat BMSC differentiated along a Schwann cell lineage could increase production of trophic factors and support neuronal survival and axonal regeneration after transplantation into the injured spinal cord. Methods. After cervical C4 hemi-section, 5-bromo-2-deoxyuridine (BrdU)/green fluorescent protein (GFP)-labeled BMSC were injected into the lateral funiculus at 1 mm rostral and caudal to the lesion site. Spinal cords were analyzed 2-13 weeks after transplantation. Results and Conclusions. Treatment of native BMSC with Schwann cell-differentiating factors significantly increased production of brain-derived neurotrophic factor in vitro. Transplanted undifferentiated and differentiated BMSC remained at the injection sites, and in the trauma zone were often associated with neurofilament-positive fibers and increased levels of vascular endothelial growth factor. BMSC promoted extensive in-growth of serotonin-positive raphaespinal axons and calcitonin gene-related peptide (CGRP)-positive dorsal root sensory axons into the trauma zone, and significantly attenuated astroglial and microglial cell reactions, but induced aberrant sprouting of CGRP-immunoreactive axons in Rexed's lamina III. Differentiated BMSC provided neuroprotection for axotomized rubrospinal neurons and increased the density of rubrospinal axons in the dorsolateral funiculus rostral to the injury site. The present results suggest that BMSC induced along the Schwann cell lineage increase expression of trophic factors and have neuroprotective and growth-promoting effects after spinal cord injury.
  •  
9.
  • Plantman, Stefan, et al. (författare)
  • Neuronal myosin-X is upregulated after peripheral nerve injury and mediates laminin-induced growth of neurites
  • 2013
  • Ingår i: Molecular and Cellular Neuroscience. - : Academic Press. - 1044-7431 .- 1095-9327. ; 56, s. 96-101
  • Tidskriftsartikel (refereegranskat)abstract
    • The successful outcome of peripheral neuronal regeneration is attributed both to the growth permissive milieu and the intrinsic ability of the neuron to initiate appropriate cellular responses such as changes in gene expression and cytoskeletal rearrangements. Even though numerous studies have shown the importance of interactions between the neuron and the extracellular matrix (ECM) in axonal outgrowth, the molecular mechanisms underlying the contact between ECM receptors and the cellular cytoskeleton remain largely unknown. Unconventional myosins constitute an important group of cytoskeletal-associated motor proteins. One member of this family is the recently described myosin-X. This protein interacts with several members of the axon growth-associated ECM receptor family of integrins and could therefore be important in neuronal outgrowth. In this study, using radioactive in situ hybridization, we found that expression of myosin-X mRNA is upregulated in adult rat sensory neurons and spinal motoneurons after peripheral nerve injury, but not after central injury. Thus, myosin-X was upregulated after injuries that can be followed by axonal regeneration. We also found that the protein is localized to neuronal growth cones and that silencing of myosin-X using RNA interference impairs the integrin-mediated growth of neurites on laminin, but has no effect on non-integrin mediated growth on N-cadherin.
  •  
10.
  • McGrath, Aleksandra, 1975- (författare)
  • Development of biosynthetic conduits for peripheral nerve repair
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Peripheral nerve injuries are often associated with significant loss of nervous tissue leading to poor restoration of function following repair of injured nerves. Although the injury gap could be bridged by autologous nerve graft, the limited access to donor material and additional morbidity such as loss of sensation and scarring have prompted a search for biosynthetic nerve transplants.The present thesis investigates the effects of a synthetic matrix BD™ PuraMatrix™ peptide (BD)hydrogel, alginate/fibronectin gel and fibrin glue combined with cultured rat Schwann cells or human bone marrow derived mesenchymal stem cells (MSC) on neuronal regeneration and muscle recovery after peripheral nerve injury in adult rats.In a sciatic nerve injury model, after 3 weeks postoperatively, the regenerating axons grew significantly longer distances within the conduits filled with BD hydrogel if compared with the alginate/fibronectin gel. The addition of rat Schwann cells to the BD hydrogel drastically increased regeneration distance with axons crossing the injury gap and entering into the distal nerve stump. However, at 16 weeks the number of regenerating spinal motoneurons was decreased to 49% and 31% in the BD hydrogel and alginate/fibronectin groups respectively. The recovery of the gastrocnemius muscle was also inferior in both experimental groups if compared with the nerve graft. The addition of the cultured Schwann cells did not further improve the regeneration of motoneurons and muscle recovery.The growth-promoting effects of the tubular conduits prepared from fibrin glue were also studied following repair of short and long peripheral nerve gaps. Retrograde neuronal labeling demonstrated that fibrin glue conduit promoted regeneration of 60% of injured sensory neurons and 52% of motoneurons when compared with the autologous nerve graft. The total number of myelinated axons in the distal nerve stump in the fibrin conduit group reached 86% of the nerve graft control and the weight of gastrocnemius and soleus muscles recovered to 82% and 89%, respectively. When a fibrin conduit was used to bridge a 20 mm sciatic nerve gap, the weight of gastrocnemius muscle reached only 43% of the nerve graft control. The morphology of the muscle showed a more atrophic appearance and the mean area and diameter of fast type fibres were significantly worse than those of the corresponding 10 mm gap group. In contrast, both gap sizes treated with nerve graft showed similar fiber size.The combination of fibrin conduit with human MSC and daily injections of cyclosporine A enhanced the distance of regeneration by four fold and the area occupied by regenerating axons by three fold at 3 weeks after nerve injury and repair. In addition, the treatment also significantly reduced the ED1 macrophage reaction. At 12 weeks after nerve injury the treatment with cyclosporine A alone or cyclosporine A combined with hMSC induced recovery of the muscle weight and the size of fast type fibres to the control levels of the nerve graft group.In summary, these results show that a BD hydrogel supplemented with rat Schwann cells can support the initial phase of neuronal regeneration across the conduit. The data also demonstrate an advantage of tubular fibrin conduits combined with human MSC to promote axonal regeneration and muscle recovery after peripheral nerve injury.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy