SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Novotny N) srt2:(2010-2014)"

Sökning: WFRF:(Novotny N) > (2010-2014)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Erni, W., et al. (författare)
  • Technical design report for the PANDA (AntiProton Annihilations at Darmstadt) Straw Tube Tracker
  • 2013
  • Ingår i: European Physical Journal A. Hadrons and Nuclei. - : Springer Science and Business Media LLC. - 1434-6001 .- 1434-601X. ; 49:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This document describes the technical layout and the expected performance of the Straw Tube Tracker (STT), the main tracking detector of the PANDA target spectrometer. The STT encloses a Micro-Vertex-Detector (MVD) for the inner tracking and is followed in beam direction by a set of GEM stations. The tasks of the STT are the measurement of the particle momentum from the reconstructed trajectory and the measurement of the specific energy loss for a particle identification. Dedicated simulations with full analysis studies of certain proton-antiproton reactions, identified as being benchmark tests for the whole PANDA scientific program, have been performed to test the STT layout and performance. The results are presented, and the time lines to construct the STT are described.
  •  
2.
  • Leymarie, N., et al. (författare)
  • Interlaboratory Study on Differential Analysis of Protein Glycosylation by Mass Spectrometry: The ABRF Glycoprotein Research Multi-Institutional Study 2012
  • 2013
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476. ; 12:10, s. 2935-2951
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the principal goals of glycoprotein research is to correlate glycan structure and function. Such correlation is necessary in order for one to understand the mechanisms whereby glycoprotein structure elaborates the functions of myriad proteins. The accurate comparison of glycoforms and quantification of glycosites are essential steps in this direction. Mass spectrometry has emerged as a powerful analytical technique in the field of glycoprotein characterization. Its sensitivity, high dynamic range, and mass accuracy provide both quantitative and sequence/structural information. As part of the 2012 ABRF Glycoprotein Research Group study, we explored the use of mass spectrometry and ancillary methodologies to characterize the glycoforms of two sources of human prostate specific antigen (PSA). PSA is used as a tumor marker for prostate cancer, with increasing blood levels used to distinguish between normal and cancer states. The glycans on PSA are believed to be biantennary N-linked, and it has been observed that prostate cancer tissues and cell lines contain more antennae than their benign counterparts. Thus, the ability to quantify differences in glycosylation associated with cancer has the potential to positively impact the use of PSA as a biomarker. We studied standard peptide-based proteomics/glycomics methodologies, including LC-MS/MS for peptide/glycopeptide sequencing and label-free approaches for differential quantification. We performed an interlaboratory study to determine the ability of different laboratories to correctly characterize the differences between glycoforms from two different sources using mass spectrometry methods. We used clustering analysis and ancillary statistical data treatment on the data sets submitted by participating laboratories to obtain a consensus of the glycoforms and abundances. The results demonstrate the relative strengths and weaknesses of top-down glycoproteomics, bottom-up glycoproteomics, and glycomics methods. T6G 2G2, Canada. [Cipollo, John F.; An, Yanming] US FDA, Ctr Biol Evaluat & Res, Bethesda, MD 20993 USA. [Desaire, Heather; Go, Eden P.] Univ Kansas, Lawrence, KS 66045 USA. [Goldman, Radoslav; Pompach, Petr; Sanda, Miloslav] Georgetown Univ, Dept Oncol, Washington, DC [Halim, Adnan; Larson, Goran; Nilsson, Jonas] Univ Gothenburg, Sahlgrenska Acad, Dept Clin Chem & [Hensbergen, Paul J.; Wuhrer, Manfred] Leiden Univ, Med Ctr, Biomol Mass Spectrometry Unit, NL- [Jabs, Wolfgang; Marx, Kristina; Resemann, Anja; Schweiger-Hufnagel, Ulrike; Suckau, Detlev] Bruker [Ly, Mellisa; Staples, Gregory O.] Agilent Technol, Agilent Labs, Santa Clara, CA 95051 USA. [Mechref, Yehia; Song, Ehwang] Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. [Nyalwidhe, Julius O.; Watson, Megan] Eastern Virginia Med Sch, Leroy T Canoles Jr Canc Res Ctr, Dept [Packer, Nicolle H.; Thaysen-Andersen, Morten] Macquarie Univ, Dept Chem & Biomol Sci, Biomol [Sihlbom, Carina] Gothenburg Univ, Prote Core Facil, Gothenburg, Sweden. [Tang, Haixu] Indiana Univ, Sch Informat, Bloomington, IN 47405 USA. [Valmuv, Leena] Finnish Red Cross Blood Serv, Helsinki 00310, Finland. [Wada, Yoshinao] Osaka Med Ctr Maternal & Child Hlth, Res Inst, Izumi Ku, Osaka 5941101, Japan.
  •  
3.
  • Balonova, Lucie, et al. (författare)
  • Characterization of protein glycosylation in Francisella tularensis subsp holarctica
  • 2012
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476 .- 1535-9484. ; 11:7
  • Tidskriftsartikel (refereegranskat)abstract
    • FTH_0069 is a previously uncharacterized strongly immunoreactive protein that has been proposed to be a novel virulence factor in Francisella tularensis. Here, the glycan structure modifying two C-terminal peptides of FTH_0069 was identified utilizing high resolution, high mass accuracy mass spectrometry, combined with in-source CID tandem MS experiments. The glycan observed at m/z 1156 was determined to be a hexasaccharide, consisting of two hexoses, three N-acetylhexosamines, and an unknown monosaccharide containing a phosphate group. The monosaccharide sequence of the glycan is tentatively proposed as X-P-HexNAc-HexNAc-Hex-Hex-HexNAc, where X denotes the unknown monosaccharide. The glycan is identical to that of DsbA glycoprotein, as well as to one of the multiple glycan structures modifying the type IV pilin PilA, suggesting a common biosynthetic pathway for the protein modification. Here, we demonstrate that the glycosylation of FTH_0069, DsbA, and PilA was affected in an isogenic mutant with a disrupted wbtDEF gene cluster encoding O-antigen synthesis and in a mutant with a deleted pglA gene encoding pilin oligosaccharyltransferase PglA. Based on our findings, we propose that PglA is involved in both pilin and general F. tularensis protein glycosylation, and we further suggest an inter-relationship between the O-antigen and the glycan synthesis in the early steps in their biosynthetic pathways. Molecular & Cellular Proteomics 11: 10.1074/mcp.M111.015016, 1-12, 2012.
  •  
4.
  • Kreckel, Holger, et al. (författare)
  • High-resolution storage-ring measurements of the dissociative recombination of H-3(+) using a supersonic expansion ion source
  • 2010
  • Ingår i: Physical Review A. Atomic, Molecular, and Optical Physics. - 1050-2947 .- 1094-1622. ; 82:4, s. 042715-
  • Tidskriftsartikel (refereegranskat)abstract
    • We have performed measurements of the dissociative electron recombination (DR) of H-3(+) at the ion storage ring TSR utilizing a supersonic expansion ion source. The ion source has been characterized by continuous wave cavity ring-down spectroscopy. We present high-resolution DR rate coefficients for different nuclear spin modifications of H-3(+) combined with precise fragment imaging studies of the internal excitation of the H-3(+) ions inside the storage ring. The measurements resolve changes in the energy dependence between the ortho-H-3(+) and para-H-3(+) rate coefficients at low center-of-mass collision energies. Analysis of the imaging data indicates that the stored H-3(+) ions may have higher rotational temperatures than previously assumed, most likely due to collisional heating during the extraction of the ions from the ion source. Simulations of the ion extraction shed light on possible origins of the heating process and how to avoid it in future experiments.
  •  
5.
  •  
6.
  • York, W. S., et al. (författare)
  • MIRAGE: The minimum information required for a glycomics experiment
  • 2014
  • Ingår i: Glycobiology. - : Oxford University Press (OUP). - 0959-6658 .- 1460-2423. ; 24:5, s. 402-406
  • Tidskriftsartikel (refereegranskat)abstract
    • The MIRAGE (minimum information required for a glycomics experiment) initiative was founded in Seattle, WA, in November 2011 in order to develop guidelines for reporting the qualitative and quantitative results obtained by diverse types of glycomics analyses, including the conditions and techniques that were applied to prepare the glycans for analysis and generate the primary data along with the tools and parameters that were used to process and annotate this data. These guidelines must address a broad range of issues, as glycomics data are inherently complex and are generated using diverse methods, including mass spectrometry (MS), chromatography, glycan array-binding assays, nuclear magnetic resonance (NMR) and other rapidly developing technologies. The acceptance of these guidelines by scientists conducting research on biological systems in which glycans have a significant role will facilitate the evaluation and reproduction of glycomics experiments and data that is reported in scientific journals and uploaded to glycomics databases. As a first step, MIRAGE guidelines for glycan analysis by MS have been recently published (Kolarich D, Rapp E, Struwe WB, Haslam SM, Zaia J., et al. 2013. The minimum information required for a glycomics experiment (MIRAGE) project - Improving the standards for reporting mass spectrometry-based glycoanalytic data. Mol. Cell Proteomics. 12:991-995), allowing them to be implemented and evaluated in the context of real-world glycobiology research. In this paper, we set out the historical context, organization structure and overarching objectives of the MIRAGE initiative.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy