SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nur Omer) srt2:(2015-2019)"

Sökning: WFRF:(Nur Omer) > (2015-2019)

  • Resultat 1-10 av 35
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adam, Rania Elhadi, 1978-, et al. (författare)
  • Graphene-based plasmonic nanocomposites for highly enhanced solar-driven photocatalytic activities
  • 2019
  • Ingår i: RSC Advances. - Cambridge : Royal Meteorological Society. - 2046-2069. ; 9:52, s. 30585-30598
  • Tidskriftsartikel (refereegranskat)abstract
    • High-efficiency photocatalysts are crucial for the removal of organic pollutants and environmental sustainability. In the present work, we report on a new low-temperature hydrothermal chemical method, assisted by ultrasonication, to synthesize disruptive plasmonic ZnO/graphene/Ag/AgI nanocomposites for solar-driven photocatalysis. The plasmonic nanocomposites were investigated by a wide range of characterization techniques, confirming successful formation of photocatalysts with excellent degradation efficiency. Using Congo red as a model dye molecule, our experimental results demonstrated a photocatalytic reactivity exceeding 90% efficiency after one hour simulated solar irradiation. The significantly enhanced degradation efficiency is attributed to improved electronic properties of the nanocomposites by hybridization of the graphene and to the addition of Ag/AgI which generates a strong surface plasmon resonance effect in the metallic silver further improving the photocatalytic activity and stability under solar irradiation. Scavenger experiments suggest that superoxide and hydroxyl radicals are responsible for the photodegradation of Congo red. Our findings are important for the fundamental understanding of the photocatalytic mechanism of ZnO/graphene/Ag/AgI nanocomposites and can lead to further development of novel efficient photocatalyst materials.
  •  
2.
  • Adam, Rania E., et al. (författare)
  • Graphene-based plasmonic nanocomposites for highly enhanced solar-driven photocatalytic activities
  • 2019
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 9:52, s. 30585-30598
  • Tidskriftsartikel (refereegranskat)abstract
    • High-efficiency photocatalysts are crucial for the removal of organic pollutants and environmental sustainability. In the present work, we report on a new low-temperature hydrothermal chemical method, assisted by ultrasonication, to synthesize disruptive plasmonic ZnO/graphene/Ag/AgI nanocomposites for solar-driven photocatalysis. The plasmonic nanocomposites were investigated by a wide range of characterization techniques, confirming successful formation of photocatalysts with excellent degradation efficiency. Using Congo red as a model dye molecule, our experimental results demonstrated a photocatalytic reactivity exceeding 90% efficiency after one hour simulated solar irradiation. The significantly enhanced degradation efficiency is attributed to improved electronic properties of the nanocomposites by hybridization of the graphene and to the addition of Ag/AgI which generates a strong surface plasmon resonance effect in the metallic silver further improving the photocatalytic activity and stability under solar irradiation. Scavenger experiments suggest that superoxide and hydroxyl radicals are responsible for the photodegradation of Congo red. Our findings are important for the fundamental understanding of the photocatalytic mechanism of ZnO/graphene/Ag/AgI nanocomposites and can lead to further development of novel efficient photocatalyst materials.
  •  
3.
  • Aftab, Umair, et al. (författare)
  • The chemically reduced CuO-Co3O4 composite as a highly efficient electrocatalyst for oxygen evolution reaction in alkaline media
  • 2019
  • Ingår i: Catalysis Science & Technology. - : ROYAL SOC CHEMISTRY. - 2044-4753 .- 2044-4761. ; 9:22, s. 6274-6284
  • Tidskriftsartikel (refereegranskat)abstract
    • The fabrication of efficient, alkaline-stable and nonprecious electrocatalysts for the oxygen evolution reaction is highly needed; however, it is a challenging task. Herein, we report a noble metal-free advanced catalyst, i.e. the chemically reduced mixed transition metal oxide CuO-Co3O4 composite, with outstanding oxygen evolution reaction activity in alkaline media. Sodium borohydride (NaBH4) was used as a reducing agent for the mixed transition metal oxide CuO-Co3O4. The chemically reduced composite carried mixed valence states of Cu and Co, which played a dynamic role in driving an excellent oxygen evolution reaction process. The X-ray photo-electron spectroscopy (XPS) study confirmed high density of active sites in the treated sample with a large number of oxygen vacancies. The developed electrocatalyst showed the lowest overpotential of 144.5 mV vs. the reversible hydrogen electrode (RHE) to achieve the current density of 40 mA cm(-2) and remained stable for 40 hours throughout the chronoamperometry test at the constant potential of 1.39 V vs. RHE. Moreover, the chemically reduced composite was highly durable. Electrochemical impedance spectroscopy (EIS) confirmed the low charge transfer resistance of 13.53 ohms for the chemically reduced composite, which was 50 and 26 times smaller than that of Co3O4 and untreated CuO-Co3O4, respectively. The electrochemically active surface area for the chemically reduced composite was found to be greater than that for pristine CuO, Co3O4 and untreated pristine CuO-Co3O4. These findings reveal the possibility of a new gateway for the capitalization of a chemically reduced sample into diverse energy storage and conversion systems such as lithium-ion batteries and supercapacitors.
  •  
4.
  • Alnoor, Hatim, et al. (författare)
  • An effective low-temperature solution synthesis of Co-doped [0001]-oriented ZnO nanorods
  • 2017
  • Ingår i: Journal of Applied Physics. - : AMER INST PHYSICS. - 0021-8979 .- 1089-7550. ; 121:21
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate an efficient possibility to synthesize vertically aligned pure zinc oxide (ZnO) and Co-doped ZnO nanorods (NRs) using the low-temperature aqueous chemical synthesis (90 degrees C). Two different mixing methods of the synthesis solutions were investigated for the Co-doped samples. The synthesized samples were compared to pure ZnO NRs regarding the Co incorporation and crystal quality. Electron paramagnetic resonance (EPR) measurements confirmed the substitution of Co2+ inside the ZnO NRs, giving a highly anisotropic magnetic Co2+ signal. The substitution of Zn2+ by Co2+ was observed to be combined with a drastic reduction in the core-defect (CD) signal (g similar to 1.956) which is seen in pure ZnO NRs. As revealed by the cathodoluminescence (CL), the incorporation of Co causes a slight red-shift of the UV peak position combined with an enhancement in the intensity of the defect-related yellow-orange emission compared to pure ZnO NRs. Furthermore, the EPR and the CL measurements allow a possible model of the defect configuration in the samples. It is proposed that the as-synthesized pure ZnO NRs likely contain Zn interstitial (Zn-i(+)) as CDs and oxygen vacancy (V-O) or oxygen interstitial (O-i) as surface defects. As a result, Co was found to likely occupy the Zn-i(+), leading to the observed CDs reduction and hence enhancing the crystal quality. These results open the possibility of synthesis of highly crystalline quality ZnO NRs-based diluted magnetic semiconductors using the low-temperature aqueous chemical method. Published by AIP Publishing.
  •  
5.
  • Alnoor, Hatim, et al. (författare)
  • Influence of ZnO seed layer precursor molar ratio on the density of interface defects in low temperature aqueous chemically synthesized ZnO nanorods/GaN light-emitting diodes
  • 2016
  • Ingår i: Journal of Applied Physics. - : AMER INST PHYSICS. - 0021-8979 .- 1089-7550. ; 119:16, s. 165702-
  • Tidskriftsartikel (refereegranskat)abstract
    • Low temperature aqueous chemical synthesis (LT-ACS) of zinc oxide (ZnO) nanorods (NRs) has been attracting considerable research interest due to its great potential in the development of light-emitting diodes (LEDs). The influence of the molar ratio of the zinc acetate (ZnAc): KOH as a ZnO seed layer precursor on the density of interface defects and hence the presence of non-radiative recombination centers in LT-ACS of ZnO NRs/GaN LEDs has been systematically investigated. The material quality of the as-prepared seed layer as quantitatively deduced by the X-ray photoelectron spectroscopy is found to be influenced by the molar ratio. It is revealed by spatially resolved cathodoluminescence that the seed layer molar ratio plays a significant role in the formation and the density of defects at the n-ZnO NRs/p-GaN heterostructure interface. Consequently, LED devices processed using ZnO NRs synthesized with molar ratio of 1:5M exhibit stronger yellow emission (similar to 575 nm) compared to those based on 1:1 and 1:3M ratios as measured by the electroluminescence. Furthermore, seed layer molar ratio shows a quantitative dependence of the non-radiative defect densities as deduced from light-output current characteristics analysis. These results have implications on the development of high-efficiency ZnO-based LEDs and may also be helpful in understanding the effects of the ZnO seed layer on defect-related non-radiative recombination. Published by AIP Publishing.
  •  
6.
  • Alnoor, Hatim, et al. (författare)
  • Seed layer synthesis effect on the concentration of interface defects and emission spectra of ZnO nanorods/p-GaN light-emitting diode
  • 2017
  • Ingår i: Physica Status Solidi (a) applications and materials science. - : WILEY-V C H VERLAG GMBH. - 1862-6300 .- 1862-6319. ; 214:1
  • Tidskriftsartikel (refereegranskat)abstract
    • As the low-temperature aqueous chemical synthesis (LT-ACS), holds great promises for the synthesis of one-dimensional (1D) ZnO nanostructure-based light-emitting diodes (LEDs) and hence require parameter tuning for optimal performance. N-ZnO nanorods (NRs)/p-GaN heterojunction LEDs have been synthesized by the LT-ACS using ZnO nanoparticle (NPs) seed layers prepared with different precursor solutions. The effect of these seed layers on the interface defect properties and emission intensity of the as-synthesized n-Zn/p-GaN heterojunction LEDs has been demonstrated by spatially resolved cathodoluminescence (CL) and electroluminescence (EL) measurements, respectively. A significant reduction of the interface defects in the n-ZnO NRs/p-GaN heterostructure synthesized from a seed layer prepared from zinc acetate (ZnAc) with a mixture of potassium hydroxide (KOH) and hexamethylenetetramine (HMTA) (donated as ZKH seed) compared with those prepared from ZnAc and KOH (donated as ZK seed) is observed as revealed by spatially resolved CL. Consequently, the LEDs based on n-ZnO NRs/p-GaN prepared from ZKH seed show an improvement in the yellow emission (approximate to 578nm) compared to that based on the ZK seed as deduced from the electroluminescence measurements. The improvement in the yellow EL emission on the ZKH LED probably attributed to the low presence of the non-radiative defect as deduced by light-output current (L-I) characteristics analysis.
  •  
7.
  • Bhatti, Muhammad Ali, et al. (författare)
  • Efficient photo catalysts based on silver doped ZnO nanorods for the photo degradation of methyl orange
  • 2019
  • Ingår i: Ceramics International. - Oxford : Elsevier. - 0272-8842 .- 1873-3956. ; 45:17, Part B, s. 23289-23297
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the doped ZnO nanorods with silver (Ag) as photosensitive material are prepared by the solvothermal method. The structural and optical characterization is carried out by the scanning electron microscopy, X-ray diffraction, energy dispersive spectroscopy and UV–visible spectroscopy. The use of Ag as dopant did not alter the morphology of ZnO except sample 4 which has flower like morphology. The Ag, Zn and O are the main constituent of doped materials. The XRD revealed a hexagonal phase for ZnO and cubic phase for silver and confirmed the successful doping of Ag. The photocatalytic activity of Ag doped ZnO nanorods was investigated for the photo degradation of methyl orange. The photocatalytic measurements show that 88% degradation of methyl orange by the sample 4 within the 2 h of UV light treatment (365 nm) is significant advancement in the photocatalyst and provide the inexpensive and promising materials for the photochemical applications. © 2019 Elsevier Ltd and Techna Group S.r.l.
  •  
8.
  • Chalangar, Ebrahim, 1984-, et al. (författare)
  • Influence of morphology on electrical and optical properties of graphene/Al-doped ZnO-nanorod composites
  • 2018
  • Ingår i: Nanotechnology. - Bristol : Institute of Physics Publishing (IOPP). - 0957-4484 .- 1361-6528. ; 29:41
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of future 3D-printed electronics relies on the access to highly conductive inexpensive materials that are printable at low temperatures (<100 C). The implementation of available materials for these applications are, however, still limited by issues related to cost and printing quality. Here, we report on the simple hydrothermal growth of novel nanocomposites that are well suited for conductive printing applications. The nanocomposites comprise highly Al-doped ZnO nanorods grown on graphene nanoplatelets (GNPs). The ZnO nanorods play the two major roles of (i) preventing GNPs from agglomerating and (ii) promoting electrical conduction paths between the graphene platelets. The effect of two different ZnO-nanorod morphologies with varying Al-doping concentration on the nanocomposite conductivity and the graphenedispersity are investigated. Time-dependent absorption, photoluminescence and photoconductivity measurements show that growth in high pH solutions promotes a better graphene dispersity, higher doping levels and enhanced bonding between the graphene and the ZnO nanorods. Growth in low pH solutions yields samples characterized by a higher conductivity and a reduced number of surface defects. These samples also exhibit a large persistent photoconductivity attributed to an effective charge separation and transfer from the nanorods to the graphene platelets. Our findings can be used to tailor the conductivity of novel printable composites, or for fabrication of large volumes of inexpensive porous conjugated graphene-semiconductor composites. © 2018 IOP Publishing Ltd.
  •  
9.
  • Chey, Chan Oeurn, et al. (författare)
  • Fast piezoresistive sensor and UV photodetector based on Mn-doped ZnO nanorods
  • 2015
  • Ingår i: Physica Status Solidi. Rapid Research Letters. - : John Wiley & Sons. - 1862-6254 .- 1862-6270. ; 9:1, s. 87-91
  • Tidskriftsartikel (refereegranskat)abstract
    • A low cost hydrothermal synthesis method to synthesize Mn-doped ZnO nanorods (NRs) with controllable morphology and structure has been developed. Ammonia is used to tailor the ammonium hydroxide concentration, which provides a source of OH– for hydrolysis and precipitation during the growth instead of HMT. The morphological, chemical composition, structural, and electronic structure studies of the Mn-doped ZnO NRs show that the Mn-doped ZnO NRs have a hexagonal wurtzite ZnO structure along the c-axis and the Mn ions replace the Zn sites in the ZnO NRs matrix without any secondary phase of metallic manganese element and manganese oxides observed. The fabricated PEDOT:PSS/Zn0.85Mn0.15O Schottky diode based piezoresistive sensor and UV photodetector shows that the piezoresistive sensor has pressure sensitivity of 0.00617 kPa–1 for the pressure range from 1 kPa to 20 kP and 0.000180 kPa–1for the pressure range from 20 kPa to 320 kPa with relatively fast response time of 0.03 s and the UV photodetector has both relatively high responsivity and fast response time of 0.065 A/W and 2.75 s, respectively. The fabricated Schottky diode can be utilized as a very useful human-friendly interactive electronic device for mass/force sensor or UV photodetector in everyday living life. This developed device is very promising for small-size, low-cost and easy-to-customize application-specific requirements. (© 2014 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim)
  •  
10.
  • David, Denis, et al. (författare)
  • Optical properties from photoelectron energy-loss spectroscopy of low-temperature aqueous chemically synthesized ZnO nanorods grown on Si
  • 2019
  • Ingår i: Semiconductor Science and Technology. - : Institute of Physics (IOP). - 0268-1242 .- 1361-6641. ; 34:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The optical properties of zinc oxide (ZnO) nanorods (NRs) synthesized by the low-temperature aqueous chemical method on top of silicon (Si) substrate have been investigated by means of photoelectron energy loss spectroscopy (PEELS). The ZnO NRs were obtained by the low temperature aqueous chemical synthesis on top of Si substrate. The measured valence band, the dynamical dielectric functions and optical absorption of the material show a reasonable agreement when the trending and shape of the theoretical calculations are considered. A first-principle calculation based on density functional theory (DFT) was performed using the partially self-consistent GW approximation (scGW(0)) and compared to the experimental results. The application of these two techniques brings a new analysis of the electronic properties of this material. The experimental results regarding the density of states (DOS) obtained for the valence band using x-ray photoelectron spectroscopy (XPS) was found to be consistent with the theoretical calculated value. Due to this consistency, the same wavefunctions was then employed to calculate the dielectric function of the ZnO NRs. The experimentally extracted dielectric function was also consistent with the calculated values.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 35
Typ av publikation
tidskriftsartikel (30)
konferensbidrag (4)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (35)
Författare/redaktör
Willander, Magnus (28)
Nur, Omer (28)
Alnoor, Hatim (9)
Willander, Magnus, 1 ... (7)
Nur, Omer, 1959- (7)
Pozina, Galia (6)
visa fler...
Ibupoto, Zafar Hussa ... (6)
Liu, Xianjie (5)
Pirhashemi, Mahsa (5)
Tahira, Aneela (5)
Khranovskyy, Volodym ... (4)
Chey, Chan Oeurn (4)
Liu, Xianjie, Ph.D. ... (3)
Hussain Ibupoto, Zaf ... (2)
Chalangar, Ebrahim, ... (2)
Aftab, Umair (2)
Abro, Muhammad Ishaq (2)
Karlsson, Fredrik (1)
Hussain, Mushtaque (1)
Lu, Jun (1)
Hultman, Lars (1)
Khan, Azam (1)
Persson, Clas (1)
Vagin, Mikhail (1)
Adam, Rania Elhadi, ... (1)
Pozina, Galia, 1966- (1)
Palisaitis, Justinas ... (1)
Pettersson, Håkan, P ... (1)
Adam, Rania E. (1)
Chalangar, Ebrahim (1)
Palisaitis, Justinas (1)
Pettersson, Håkan (1)
Alnoor, Hatim, 1979- (1)
Baloch, Muhammad Moa ... (1)
Mazzaro, Raffaello (1)
Yu, Cong (1)
Pettersson, Håkan, 1 ... (1)
Broitman, Esteban (1)
Israr-Qadir, Muhamma ... (1)
Jamil-Rana, Sadaf (1)
Savoyant, Adrien (1)
Iandolo, Donata (1)
Khun, Kimleang (1)
Shah, Aqeel Ahmed (1)
Jonsson, Magnus (1)
Machhadani, Houssain ... (1)
Baldissera, Gustavo (1)
Bhatti, Muhammad Ali (1)
Almani, Khalida Fary ... (1)
Chalangar, Ebrahim, ... (1)
visa färre...
Lärosäte
Linköpings universitet (34)
Högskolan i Halmstad (3)
Lunds universitet (2)
Kungliga Tekniska Högskolan (1)
Språk
Engelska (35)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (26)
Teknik (13)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy