SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(O'Sullivan Erin) srt2:(2020)"

Sökning: WFRF:(O'Sullivan Erin) > (2020)

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aartsen, M. G., et al. (författare)
  • A Search for IceCube Events in the Direction of ANITA Neutrino Candidates
  • 2020
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 892:1
  • Tidskriftsartikel (refereegranskat)abstract
    • During the first three flights of the Antarctic Impulsive Transient Antenna (ANITA) experiment, the collaboration detected several neutrino candidates. Two of these candidate events were consistent with an ultra-high-energy upgoing air shower and compatible with a tau neutrino interpretation. A third neutrino candidate event was detected in a search for Askaryan radiation in the Antarctic ice, although it is also consistent with the background expectation. The inferred emergence angle of the first two events is in tension with IceCube and ANITA limits on isotropic cosmogenic neutrino fluxes. Here we test the hypothesis that these events are astrophysical in origin, possibly caused by a point source in the reconstructed direction. Given that any ultra-high-energy tau neutrino flux traversing the Earth should be accompanied by a secondary flux in the TeV-PeV range, we search for these secondary counterparts in 7 yr of IceCube data using three complementary approaches. In the absence of any significant detection, we set upper limits on the neutrino flux from potential point sources. We compare these limits to ANITA's sensitivity in the same direction and show that an astrophysical explanation of these anomalous events under standard model assumptions is severely constrained regardless of source spectrum.
  •  
2.
  • Aartsen, M. G., et al. (författare)
  • A Search for Neutrino Point-source Populations in 7 yr of IceCube Data with Neutrino-count Statistics
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 893:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The presence of a population of point sources in a data set modifies the underlying neutrino-count statistics from the Poisson distribution. This deviation can be exactly quantified using the non-Poissonian template fitting technique, and in this work we present the first application of this approach to the IceCube high-energy neutrino data set. Using this method, we search in 7 yr of IceCube data for point-source populations correlated with the disk of the Milky Way, the Fermi bubbles, the Schlegel, Finkbeiner, and Davis dust map, or with the isotropic extragalactic sky. No evidence for such a population is found in the data using this technique, and in the absence of a signal, we establish constraints on population models with source-count distribution functions that can be described by a power law with a single break. The derived limits can be interpreted in the context of many possible source classes. In order to enhance the flexibility of the results, we publish the full posterior from our analysis, which can be used to establish limits on specific population models that would contribute to the observed IceCube neutrino flux.
  •  
3.
  • Aartsen, M. G., et al. (författare)
  • Characteristics of the Diffuse Astrophysical Electron and Tau Neutrino Flux with Six Years of IceCube High Energy Cascade Data
  • 2020
  • Ingår i: Physical Review Letters. - : American Physical Society (APS). - 0031-9007 .- 1079-7114. ; 125:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the first measurement of the astrophysical neutrino flux using particle showers (cascades) in IceCube data from 2010-2015. Assuming standard oscillations, the astrophysical neutrinos in this dedicated cascade sample are dominated (similar to 90%) by electron and tau flavors. The flux, observed in the sensitive energy range from 16 TeV to 2.6 PeV, is consistent with a single power-law model as expected from Fermi-type acceleration of high energy particles at astrophysical sources. We find the flux spectral index to be gamma = 2.53 +/- 0.07 and a flux normalization for each neutrino flavor of phi(astro) = 1.66(-0.27)(+0.25) at E-0 = 100 TeV, in agreement with IceCube's complementary muon neutrino results and with all-neutrino flavor fit results. In the measured energy range we reject spectral indices gamma <= 2.28 at >= 3 sigma significance level. Because of high neutrino energy resolution and low atmospheric neutrino backgrounds, this analysis provides the most detailed characterization of the neutrino flux at energies below similar to 100 TeV compared to previous IceCube results. Results from fits assuming more complex neutrino flux models suggest a flux softening at high energies and a flux hardening at low energies (p value >= 0.06). The sizable and smooth flux measured below similar to 100 TeV remains a puzzle. In order to not violate the isotropic diffuse gamma-ray background as measured by the Fermi Large Area Telescope, it suggests the existence of astrophysical neutrino sources characterized by dense environments which are opaque to gamma rays.
  •  
4.
  • Aartsen, M. G., et al. (författare)
  • Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU
  • 2020
  • Ingår i: Physical Review D. - : AMER PHYSICAL SOC. - 2470-0010 .- 2470-0029. ; 101:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The ordering of the neutrino mass eigenstates is one of the fundamental open questions in neutrino physics. While current-generation neutrino oscillation experiments are able to produce moderate indications on this ordering, upcoming experiments of the next generation aim to provide conclusive evidence. In this paper we study the combined performance of the two future multi-purpose neutrino oscillation experiments JUNO and the IceCube Upgrade, which employ two very distinct and complementary routes toward the neutrino mass ordering. The approach pursued by the 20 kt medium-baseline reactor neutrino experiment JUNO consists of a careful investigation of the energy spectrum of oscillated (nu) over bar (e) produced by ten nuclear reactor cores. The IceCube Upgrade, on the other hand, which consists of seven additional densely instrumented strings deployed in the center of IceCube DeepCore, will observe large numbers of atmospheric neutrinos that have undergone oscillations affected by Earth matter. In a joint fit with both approaches, tension occurs between their preferred mass-squared differences Delta m(31)(2) = m(3)(2) - m(1)(2) in within the wrong mass ordering. In the case of JUNO and the IceCube Upgrade, this allows to exclude the wrong ordering at > 5 sigma on a timescale of 3-7 years-even under circumstances that are unfavorable to the experiments individual sensitivities. For PINGU, a 26-string detector array designed as a potential low-energy extension to IceCube, the inverted ordering could be excluded within 1.5 years (3 years for the normal ordering) in a joint analysis.
  •  
5.
  • Aartsen, M. G., et al. (författare)
  • Computational techniques for the analysis of small signals in high-statistics neutrino oscillation experiments
  • 2020
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 977
  • Tidskriftsartikel (refereegranskat)abstract
    • The current and upcoming generation of Very Large Volume Neutrino Telescopes - collecting unprecedented quantities of neutrino events - can be used to explore subtle effects in oscillation physics, such as (but not restricted to) the neutrino mass ordering. The sensitivity of an experiment to these effects can be estimated from Monte Carlo simulations. With the high number of events that will be collected, there is a trade-off between the computational expense of running such simulations and the inherent statistical uncertainty in the determined values. In such a scenario, it becomes impractical to produce and use adequately-sized sets of simulated events with traditional methods, such as Monte Carlo weighting. In this work we present a staged approach to the generation of expected distributions of observables in order to overcome these challenges. By combining multiple integration and smoothing techniques which address limited statistics from simulation it arrives at reliable analysis results using modest computational resources.
  •  
6.
  • Aartsen, M. G., et al. (författare)
  • Constraints on neutrino emission from nearby galaxies using the 2MASS redshift survey and IceCube
  • 2020
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :7
  • Tidskriftsartikel (refereegranskat)abstract
    • The distribution of galaxies within the local universe is characterized by anisotropic features. Observatories searching for the production sites of astrophysical neutrinos can take advantage of these features to establish directional correlations between a neutrino dataset and overdensities in the galaxy distribution in the sky. The results of two correlation searches between a seven-year time-integrated neutrino dataset from the IceCube Neutrino Observatory, and the 2MASS Redshift Survey (2MRS) catalog are presented here. The first analysis searches for neutrinos produced via interactions between diffuse intergalactic Ultra-High Energy Cosmic Rays (UHECRs) and the matter contained within galaxies. The second analysis searches for low-luminosity sources within the local universe, which would produce subthreshold multiplets in the IceCube dataset that directionally correlate with galaxy distribution. No significant correlations were observed in either analyses. Constraints are presented on the flux of neutrinos originating within the local universe through diffuse intergalactic UHECR interactions, as well as on the density of standard candle sources of neutrinos at low luminosities.
  •  
7.
  • Aartsen, M. G., et al. (författare)
  • Design and performance of the first IceAct demonstrator at the South Pole
  • 2020
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221 .- 1748-0221. ; 15:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we describe the first results of IceAct, a compact imaging air-Cherenkov telescope operating in coincidence with the IceCube Neutrino Observatory (IceCube) at the geographic South Pole. An array of IceAct telescopes (referred to as the IceAct project) is under consideration as part of the IceCube-Gen2 extension to IceCube. Surface detectors in general will be a powerful tool in IceCube-Gen2 for distinguishing astrophysical neutrinos from the dominant backgrounds of cosmic-ray induced atmospheric muons and neutrinos: the IceTop array is already in place as part of IceCube, but has a high energy threshold. Although the duty cycle will be lower for the IceAct telescopes than the present IceTop tanks, the IceAct telescopes may prove to be more effective at lowering the detection threshold for air showers. Additionally, small imaging air-Cherenkov telescopes in combination with IceTop, the deep IceCube detector or other future detector systems might improve measurements of the composition of the cosmic ray energy spectrum. In this paper we present measurements of a first 7-pixel imaging air Cherenkov telescope demonstrator, proving the capability of this technology to measure air showers at the South Pole in coincidence with IceTop and the deep IceCube detector.
  •  
8.
  • Aartsen, M. G., et al. (författare)
  • Development of an analysis to probe the neutrino mass ordering with atmospheric neutrinos using three years of IceCube DeepCore data IceCube Collaboration
  • 2020
  • Ingår i: European Physical Journal C. - : SPRINGER. - 1434-6044 .- 1434-6052. ; 80:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Neutrino Mass Ordering (NMO) remains one of the outstanding questions in the field of neutrino physics. One strategy to measure the NMO is to observe matter effects in the oscillation pattern of atmospheric neutrinos above similar to 1GeV, as proposed for several next-generation neutrino experiments. Moreover, the existing IceCube DeepCore detector can already explore this type of measurement. We present the development and application of two independent analyses to search for the signature of the NMO with three years of DeepCore data. These analyses include a full treatment of systematic uncertainties and a statistically-rigorous method to determine the significance for the NMO from a fit to the data. Both analyses show that the dataset is fully compatible with both mass orderings. For the more sensitive analysis, we observe a preference for normal ordering with a p-value of pIO=15.3% and CLs=53.3% for the inverted ordering hypothesis, while the experimental results from both analyses are consistent within their uncertainties. Since the result is independent of the value of delta CP and obtained from energies E nu greater than or similar to 5GeV, it is complementary to recent results from long-baseline experiments. These analyses set the groundwork for the future of this measurement with more capable detectors, such as the IceCube Upgrade and the proposed PINGU detector.
  •  
9.
  • Aartsen, M. G., et al. (författare)
  • eV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory
  • 2020
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 125:14
  • Tidskriftsartikel (refereegranskat)abstract
    • The results of a 3 + 1 sterile neutrino search using eight years of data from the IceCube Neutrino Observatory are presented. A total of 305 735 muon neutrino events are analyzed in reconstructed energy-zenith space to test for signatures of a matter-enhanced oscillation that would occur given a sterile neutrino state with a mass-squared differences between 0.01 and 100 eV(2). The best-fit point is found to be at sin(2)(2 theta(24)) = 0.10 and Delta m(41)(2) = 4.5 eV(2), which is consistent with the no sterile neutrino hypothesis with a p value of 8.0%.
  •  
10.
  • Aartsen, M. G., et al. (författare)
  • IceCube Search for Neutrinos Coincident with Compact Binary Mergers from LIGO-Virgo's First Gravitational-wave Transient Catalog
  • 2020
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 898:1, s. L10-
  • Tidskriftsartikel (refereegranskat)abstract
    • Using the IceCube Neutrino Observatory, we search for high-energy neutrino emission coincident with compact binary mergers observed by the LIGO and Virgo gravitational-wave (GW) detectors during their first and second observing runs. We present results from two searches targeting emission coincident with the sky localization of each GW event within a 1000 s time window centered around the reported merger time. One search uses a model-independent unbinned maximum-likelihood analysis, which uses neutrino data from IceCube to search for pointlike neutrino sources consistent with the sky localization of GW events. The other uses the Low-Latency Algorithm for Multi-messenger Astrophysics, which incorporates astrophysical priors through a Bayesian framework and includes LIGO-Virgo detector characteristics to determine the association between the GW source and the neutrinos. No significant neutrino coincidence is seen by either search during the first two observing runs of the LIGO-Virgo detectors. We set upper limits on the time-integrated neutrino emission within the 1000 s window for each of the 11 GW events. These limits range from 0.02 to 0.7 . We also set limits on the total isotropic equivalent energy, E-iso, emitted in high-energy neutrinos by each GW event. These limits range from 1.7 x 10(51) to 1.8 x 10(55) erg. We conclude with an outlook for LIGO-Virgo observing run O3, during which both analyses are running in real time.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy