SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Obermüller Stefanie) srt2:(2004)"

Sökning: WFRF:(Obermüller Stefanie) > (2004)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ivarsson, Rosita, et al. (författare)
  • Temperature-Sensitive Random Insulin Granule Diffusion is a Prerequisite for Recruiting Granules for Release.
  • 2004
  • Ingår i: Traffic: the International Journal of Intracellular Transport. - : Wiley. - 1398-9219. ; 5:10, s. 750-762
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucose-evoked insulin secretion exhibits a biphasic time course and is associated with accelerated intracellular granule movement. We combined live confocal imaging of EGFP-labelled insulin granules with capacitance measurements of exocytosis in clonal INS-1 cells to explore the relation between distinct random and directed modes of insulin granule movement, as well as exocytotic capacity. Reducing the temperature from 34 °C to 24 °C caused a dramatic 81% drop in the frequency of directed events, but reduced directed velocities by a mere 25%. The much stronger temperature sensitivity of the frequency of directed events (estimated energy of activation ~ 135 kJ/mol) than that of the granule velocities (~ 22 kJ/mol) suggests that cooling-induced suppression of insulin granule movement is attributable to factors other than reduced motor protein adenosine 5'-triphosphatase activity. Indeed, cooling suppresses random granule diffusion by ~ 50%. In the single cell, the number of directed events depends on the extent of granule diffusion. Finally, single-cell exocytosis exhibits a biphasic pattern corresponding to that observed in vivo, and only the component reflecting 2nd phase insulin secretion is affected by cooling. We conclude that random diffusive movement is a prerequisite for directed insulin granule transport and for the recruitment of insulin granules released during 2nd phase insulin secretion.
  •  
2.
  • Jimenez, Javier, et al. (författare)
  • Insulin feedback actions: complex effects involving isoforms of islet nitric oxide synthase.
  • 2004
  • Ingår i: Regulatory Peptides. - : Elsevier BV. - 1873-1686 .- 0167-0115. ; 122:2, s. 109-118
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study examined the effects of exogenous insulin on C-peptide release in relation to islet activities of neural constitutive nitric oxide synthase (ncNOS) and inducible NOS (iNOS). The dose–response curves for glucose-stimulated insulin and C-peptide release from isolated islets were practically identical: 0.05–0.1 nmol/l insulin stimulated, 1–100 nmol/l had no effect, whereas concentrations ≥250 nmol/l (“high insulin”), inhibited C-peptide release. Both the stimulatory and inhibitory effects were abolished by the phosphatidylinositol 3′-kinase inhibitor wortmannin. Addition of a NOS inhibitor partially reversed the inhibitory action of high insulin, but had no effect on the stimulatory action of low insulin (0.1 nmol/l). Moreover, high insulin markedly increased islet ncNOS activity and induced a strong iNOS activity. As shown biochemically and with confocal microscopy, the stimulatory action of high insulin on NOS activities and the associated inhibition of C-peptide release were reversed by raising cyclic AMP through addition of either glucagon-like peptide 1 (GLP-1) or dibutyryl cyclic AMP (Bt2cAMP) to the incubated islets. We conclude that the positive feedback mechanisms of action of insulin are independent of islet NOS activities and remain unclear. The negative feedback action of insulin, however, can be explained by its ability to stimulate both islet ncNOS activity and the expression and activity of iNOS. The effects on iNOS are most likely transduced through phosphatidylinositol 3′-kinase and are counteracted by raising islet cyclic AMP levels.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy