SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Obers Niels A.) srt2:(2020-2024)"

Sökning: WFRF:(Obers Niels A.) > (2020-2024)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Obers, Niels A., et al. (författare)
  • Quantum gravity phenomenology at the dawn of the multi-messenger era—A review
  • 2022
  • Ingår i: Progress in Particle and Nuclear Physics. - : Elsevier BV. - 0146-6410 .- 1873-2224. ; 125
  • Forskningsöversikt (refereegranskat)abstract
    • The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.
  •  
2.
  • Blair, Chris D. A., et al. (författare)
  • Unification of Decoupling Limits in String and M Theory
  • 2024
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 132:16
  • Tidskriftsartikel (refereegranskat)abstract
    • We study and extend the duality web unifying different decoupling limits of type II superstring theories and M theory. We systematically build connections to different corners, such as matrix theories, nonrelativistic string and M theory, tensionless (and ambitwistor) string theory, Carrollian string theory, and spin matrix limits of AdS/CFT. We discuss target space, world sheet, and worldvolume aspects of these limits in arbitrary curved backgrounds.
  •  
3.
  • Blair, Chris D. A., et al. (författare)
  • Unification of Decoupling Limits in String and M Theory
  • 2024
  • Ingår i: Physical Review Letters. - : American Physical Society (APS). - 0031-9007 .- 1079-7114. ; 132:16
  • Tidskriftsartikel (refereegranskat)abstract
    • We study and extend the duality web unifying different decoupling limits of type II superstring theories and M theory. We systematically build connections to different corners, such as matrix theories, nonrelativistic string and M theory, tensionless (and ambitwistor) string theory, Carrollian string theory, and spin matrix limits of AdS/CFT. We discuss target space, world sheet, and worldvolume aspects of these limits in arbitrary curved backgrounds.
  •  
4.
  • Armas, Jay, et al. (författare)
  • Newton-Cartan submanifolds and fluid membranes
  • 2020
  • Ingår i: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics. - : American Physical Society (APS). - 1539-3755 .- 1550-2376. ; 101:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We develop the geometric description of submanifolds in Newton-Cartan spacetime. This provides the necessary starting point for a covariant spacetime formulation of Galilean-invariant hydrodynamics on curved surfaces. We argue that this is the natural geometrical framework to study fluid membranes in thermal equilibrium and their dynamics out of equilibrium. A simple model of fluid membranes that only depends on the surface tension is presented and, extracting the resulting stresses, we show that perturbations away from equilibrium yield the standard result for the dispersion of elastic waves. We also find a generalization of the Canham-Helfrich bending energy for lipid vesicles that takes into account the requirements of thermal equilibrium.
  •  
5.
  • Bidussi, Leo, et al. (författare)
  • Longitudinal Galilean and Carrollian limits of non-relativistic strings
  • 2023
  • Ingår i: Journal of High Energy Physics (JHEP). - : Springer Nature. - 1126-6708 .- 1029-8479. ; 2023:12
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well known that one can take an infinite speed of light limit that gives rise to non-relativistic strings with a relativistic worldsheet sigma model but with a non-relativistic target space geometry. In this work we systematically explore two further limits in which the worldsheet becomes non-Lorentzian. The first gives rise to a Galilean string with a Galilean structure on the worldsheet, extending previous work on Spin Matrix-related string theory limits. The second is a completely novel limit leading to a worldsheet theory with a Carrollian structure. We find the Nambu-Goto and Polyakov formulations of both limits and explore gauge fixing choices. Furthermore, we study in detail the case of the Galilean string for a class of target space geometries that are related to Spin Matrix target space geometries, for which the Nambu-Goto action (in static gauge) is quadratic in the fields.
  •  
6.
  • Bidussi, Leo, et al. (författare)
  • Torsional string Newton-Cartan geometry for non-relativistic strings
  • 2022
  • Ingår i: Journal of High Energy Physics (JHEP). - : Springer Nature. - 1126-6708 .- 1029-8479. ; :2
  • Tidskriftsartikel (refereegranskat)abstract
    • We revisit the formulation of non-relativistic (NR) string theory and its target space geometry. We obtain a new formulation in which the geometry contains a two-form field that couples to the tension current and that transforms under string Galilei boosts. This parallels the Newton-Cartan one-form that couples to the mass current of a non-relativistic point particle. We show how this formulation of the NR string arises both from an infinite speed of light limit and a null reduction of the relativistic closed bosonic string. In both cases, the two-form originates from a combination of metric quantities and the Kalb-Ramond field. The target space geometry of the NR string is seen to arise from the gauging of a new algebra that is obtained by an Inonu-Wigner contraction of the Poincare algebra extended by the symmetries of the Kalb-Ramond field. In this new formulation, there are no superfluous target space fields that can be removed by fixing a Stuckelberg symmetry. Classically, there are no foliation/torsion constraints imposed on the target space geometry.
  •  
7.
  • de Boer, Jan, et al. (författare)
  • Carroll stories
  • 2023
  • Ingår i: Journal of High Energy Physics (JHEP). - : Springer Nature. - 1126-6708 .- 1029-8479. ; 2023:9
  • Tidskriftsartikel (refereegranskat)abstract
    • We study various aspects of the Carroll limit in which the speed of light is sent to zero. A large part of this paper is devoted to the quantization of Carroll field theories. We show that these exhibit infinite degeneracies in the spectrum and may suffer from non-normalizable ground states. As a consequence, partition functions of Carroll systems are ill-defined and do not lead to sensible thermodynamics. These seemingly pathological properties might actually be a virtue in the context of flat space holography. Better defined is the Carroll regime, in which we consider the leading order term in an expansion around vanishing speed of light without taking the strict Carroll limit. Such an expansion may lead to sensible notions of Carroll thermodynamics. An interesting example is a gas of massless particles with an imaginary chemical potential conjugate to the momentum. In the Carroll regime we show that the partition function of such a gas leads to an equation of state with w = −1. As a separate story, we study aspects of Carroll gravity and couplings to Carrollian energy-momentum tensors. We discuss many examples of solutions to Carroll gravity, including wormholes, Maxwell fields, solutions with a cosmological constant, and discuss the structure of geodesics in a Carroll geometry. The coupling of matter to Carroll gravity also allows us to derive energy-momentum tensors for hypothetical Carroll fluids from expanding relativistic fluids as well as directly from hydrostatic partition functions.
  •  
8.
  • de Boer, Jan, et al. (författare)
  • Carroll Symmetry, Dark Energy and Inflation
  • 2022
  • Ingår i: Frontiers in Physics. - : Frontiers Media SA. - 2296-424X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Carroll symmetry arises from Poincare symmetry upon taking the limit of vanishing speed of light. We determine the constraints on the energy-momentum tensor implied by Carroll symmetry and show that for energy-momentum tensors of perfect fluid form, these imply an equation of state epsilon + P = 0 for energy density plus pressure. Therefore Carroll symmetry might be relevant for dark energy and inflation. In the Carroll limit, the Hubble radius goes to zero and outside it recessional velocities are naturally large compared to the speed of light. The de Sitter group of isometries, after the limit, becomes the conformal group in Euclidean flat space. We also study the Carroll limit of chaotic inflation, and show that the scalar field is naturally driven to have an equation of state with w = - 1. Finally we show that the freeze-out of scalar perturbations in the two point function at horizon crossing is a consequence of Carroll symmetry. To make the paper self-contained, we include a brief pedagogical review of Carroll symmetry, Carroll particles and Carroll field theories that contains some new material as well. In particular we show, using an expansion around speed of light going to zero, that for scalar and Maxwell type theories one can take two different Carroll limits at the level of the action. In the Maxwell case these correspond to the electric and magnetic limit. For point particles we show that there are two types of Carroll particles: those that cannot move in space and particles that cannot stand still.
  •  
9.
  • de Boer, Jan, et al. (författare)
  • Non-boost invariant fluid dynamics
  • 2020
  • Ingår i: SciPost Physics. - : Stichting SciPost. - 2542-4653. ; 9:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We consider uncharged fluids without any boost symmetry on an arbitrary curved background and classify all allowed transport coefficients up to first order in derivatives. We assume rotational symmetry and we use the entropy current formalism. The curved background geometry in the absence of boost symmetry is called absolute or Aristotelian spacetime. We present a closed-form expression for the energy-momentum tensor in Landau frame which splits into three parts: a dissipative (10), a hydrostatic non-dissipative (2) and a non-hydrostatic non-dissipative part (4), where in parenthesis we have indicated the number of allowed transport coefficients. The non-hydrostatic non-dissipative transport coefficients can be thought of as the generalization of coefficients that would vanish if we were to restrict to linearized perturbations and impose the Onsager relations. For the two hydrostatic and the four non-hydrostatic non-dissipative transport coefficients we present a Lagrangian description. Finally when we impose scale invariance, thus restricting to Lifshitz fluids, we find 7 dissipative, 1 hydrostatic and 2 non-hydrostatic non-dissipative transport coefficients.
  •  
10.
  • Hansen, Dennis, et al. (författare)
  • Carroll expansion of general relativity
  • 2022
  • Ingår i: SciPost Physics. - : Stichting SciPost. - 2542-4653. ; 13:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the small speed of light expansion of general relativity, utilizing the modern perspective on non-Lorentzian geometry. This is an expansion around the ultra-local Car-roll limit, in which light cones close up. To this end, we first rewrite the Einstein???Hilbert action in pre-ultra-local variables, which is closely related to the 3+1 decomposition of general relativity. At leading order in the expansion, these pre-ultra-local variables yield Carroll geometry and the resulting action describes the electric Carroll limit of general relativity. We also obtain the next-to-leading order action in terms of Carroll geometry and next-to-leading order geometric fields. The leading order theory yields constraint and evolution equations, and we can solve the evolution analytically. We furthermore construct a Carroll version of Bowen???York initial data, which has associated conserved boundary linear and angular momentum charges. The notion of mass is not present at leading order and only enters at next-to-leading order. This is illustrated by considering a particular truncation of the next-to-leading order action, corresponding to the magnetic Carroll limit, where we find a solution that describes the Carroll limit of a Schwarzschild black hole. Finally, we comment on how a cosmological constant can be incorporated in our analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy