SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Odén Magnus Professor) srt2:(2020-2024)"

Search: WFRF:(Odén Magnus Professor) > (2020-2024)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Moreno, Maiara, 1993- (author)
  • Wear behavior of Ti1-xAlxN-based coatings during turning
  • 2022
  • Doctoral thesis (other academic/artistic)abstract
    • Ti1-xAlxN coatings are extensively used on cutting tools used for metal cutting. In this thesis, the wear behavior of TiN, TiAlN with different Al-content, and TiAlWN and TiAlMoN coatings is investigated after turning, using electron microscopy and X-ray absorption spectroscopy techniques. An in operando study using high-energy X-ray diffraction during turning is also carried out, to understand the strain and phase evolution of TiAlN coatings during machining. The main wear mechanisms when cutting stainless steel 316L with cutting speeds from 60 m/min up to 220 m/min are investigated. The results show a difference in wear behavior with cutting speed. At low cutting speeds, adhesive wear is the main mechanism that generates coating failure, causing fracture of the coating. The higher Al-content coatings (x ≥ 0.53) perform better compared to lower Al-content coatings, likely due to a better fracture resistance. At higher cutting speeds, 220 m/min, crater wear due to abrasive wear and chemical reactions between coating and workpiece material occurs. In this case, the high temperatures achieved during turning results in formation of hexagonal (h)-AlN in Ti0.38Al0.62N coatings, which lowers their wear resistance. For TiAlMoN and TiAlWN, an improved wear behavior is observed compared to pure TiAlN, because it retards spinodal decomposition and the subsequent formation of h-AlN. Investigations of the sliding area using TEM, EDS and XANES spectra from the Ti 1s-edge reveals that there are differences in level of spinodal decomposition, thus differences in temperature, in different regions of the tool. During in operando orthogonal turning of alloy steel, spinodal decomposition was observed to take place after only 10 s of turning for the highest Al-content coatings. Decomposition occurs where the temperature of the rake face is the highest. In summary, the results achieved lead to a better understanding of the interactions between tool and workpiece material and the different wear mechanisms which may expand the application envelope for these coatings.
  •  
2.
  • Salamania, Janella, 1992- (author)
  • Defects in Titanium Aluminum Nitride-Based Thin Films
  • 2023
  • Doctoral thesis (other academic/artistic)abstract
    • Coatings and thin films inherently contain several types of defects. This thesis aims to enhance the understanding of the relationship of defects on the growth, structure, stability, and properties of titanium aluminum nitride films synthesized by physical vapor deposition techniques.Heteroepitaxial cubic and wurtzite films in the Ti-Al-N system grown by reactive magnetron sputtering were studied in relation to their defect structures. The dislocation structures of heteroepitaxial TiN and Ti1-xAlxNy films were analyzed by high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). Together with atomistic simulations, it was revealed that the presence of different dislocation types in TiN enhances the metal-metal bonds which locally weakens the directionally covalent metal-N bonds. In epitaxial cubic Ti1-xAlxN films, microstrain analysis shows that increasing N-vacancies influences the strain and compositional fluctuations in as-deposited states. During spinodal decomposition induced by annealing to high temperatures, the delay in coarsening and strain correlates with the amount of N vacancies. Detailed characterization of the decomposing domains exposed the formation of stacking faults and partial dislocations as a strain-relieving mechanism which also facilitates the known cubic-to-wurtzite transformation in Ti-Al-N.Cathodic arc deposited Ti1-xAlxN films were grown by applying a low duty cycle pulsed-substrate bias and high nitrogen pressures. This resulted into films with coarse grains and low lattice defects within them, indicating a kinetically controlled route to modify the defect structures in arc-deposited films. Applying the same technique on single crystalline TiN seed layer films kinetically stabilizes a pseudomorphic growth, allowing to form a highly textured, pseudo epitaxial wurtzite Ti1-xAlxN films by arc deposition. In combination with theoretical calculations, it was revealed that w-Ti1-xAlxN films also exhibit a miscibility gap which enables spinodal decomposition and thus age hardening when annealed. Finally, magnetron sputtered nitrogen-deficient w-Ti1-xAlxNy heteroepitaxial films were shown to exhibit a decomposition route that involves the formation of coherent intermediate MAX-like phases before transforming to pure c-TiN and w-AlN phases, which results to continued age hardening up to 1200°C.The findings in this work increase the fundamental understanding of the role of defects in Ti-Al-N films and open new routes for defect-based engineering strategies.
  •  
3.
  • Wu, Zhixing, 1990-, et al. (author)
  • Conducting Polymer‐Based e‐Refinery for Sustainable Hydrogen Peroxide Production
  • 2023
  • In: Energy & Environmental Materials. - : Wiley-Blackwell. - 2575-0356.
  • Journal article (peer-reviewed)abstract
    • Electrocatalysis enables the industrial transition to sustainable production of chemicals using abundant precursors and electricity from renewable sources. De-centralized production of hydrogen peroxide (H2O2) from water and oxygen of air is highly desirable for daily life and industry. We report an effective electrochemical refinery (e-refinery) for H2O2 by means of electrocatalysis-controlled comproportionation reaction (2(H)O + O -> 2(HO)), feeding pure water and oxygen only. Mesoporous nickel (II) oxide (NiO) was used as electrocatalyst for oxygen evolution reaction (OER), producing oxygen at the anode. Conducting polymer poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) drove the oxygen reduction reaction (ORR), forming H2O2 on the cathode. The reactions were evaluated in both half-cell and device configurations. The performance of the H2O2 e-refinery, assembled on anion-exchange solid electrolyte and fed with pure water, was limited by the unbalanced ionic transport. Optimization of the operation conditions allowed a conversion efficiency of 80%.
  •  
4.
  • Wu, Zhixing, 1990- (author)
  • Mesoporous transition metal oxides for oxygen electrocatalysis in energy conversion technologies
  • 2023
  • Doctoral thesis (other academic/artistic)abstract
    • Electrocatalysis, the foundation of electrical to chemical energy transformation, enables the mitigation of the electrical energy losses during reactions and the control of selectivity of the process to certain chemical products. The slow rate and the multi-step complexity of oxygen-associated reactions, namely oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), motivate the use of platinum group metals (PGM) catalysts, which significantly increase the price of the technologies due to the cost and scarcity of PGM-based materials. This thesis aims to fundamentally understand the electrocatalytical aspects of oxygen-associated reactions and their relevance to sustainable technologies by development of cheap and abundant materials.In this work, hydrothermal treatment routes are developed for synthesis of mesoporous MOx (M = Cr, Fe, Co, Ni, Ce) and NiCo2O4 as water-processable oxygen electrocatalysts. Firstly, anionic surfactant templated mesoporous NiO shows the lowest voltage loss with the highest turnover frequency for OER in consequence of the most accessible active sites among of nanoporous nickel (II) oxide (Paper I). It is observed that nickel and cobalt oxides are efficient bifunctional oxygen electrocatalysts compared to other investigated metal oxides. This stems from the lower voltage loss and by the presence of surface adsorbed hydroxyl species. In situ quantification shows that hydrogen peroxide is either the terminal product or the intermediate for ORR on meso-Cr2O3 and on other electrocatalysts, respectively (Paper II). In Paper IV, mesoporous NiO and NiCo2O4 are synthesized by using a template-free hydrothermal route, and NiCo2O4 performs more efficient bifunctional oxygen catalysts compared to NiO. It is found that ORR on mesoporous NiO and NiCo2O4 follow (2+1)e- and 4e-ORR path, with hydroxyl radical and hydroxyl ion as terminal products, respectively.Integrating the ORR and OER in electrochemical cells enables the study and development of energy conversion technologies. The bifunctional oxygen activity of meso-NiO is demonstrated in a PGM-free oxygen pump fed with air and water, resulting in a low faradic efficiency due to limited triple reaction points (Paper II). The performance of the oxygen pump has been significantly improved by exchanging the catalyst to mesoporous NiCo2O4 and the anolyte to concentrated KOH. The same setup is used for synthesis of the hydroxyl radical using mesoporous NiO. The hydroxyl radical is identified using degradation of rhodamine B, and a degradation rate of 0.034 min−1 is obtained in Paper IV. Additionally, two effective 2e-ORR electrocatalysts of porous organic conducting polymer poly(3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS) (Paper III) and mesoporous chromium (Paper V) have been studied for electrochemical refinery H2O2 by electrocatalysis-controlled comproportionation reaction (2?2? + ?2 → 2?2?2). It is observed that the hydrogen peroxide as terminal product of oxygen reduction shows ~70% Faradic efficiency on these two materials. The optimization of operation conditions on PEDOT: PSS-based hydrogen peroxide electrolyzer allows the conversion efficiency of 80% below 1V cell voltage. The optimized meso-Cr2O3-based hydrogen peroxide electrolyzer enables the conversion efficiency up to 90% that can be assigned to the suppressed of deterioration of catalyst.To summarize, this thesis has developed mesoporous metal oxides use as PGM-free electrocatalysts for investigating oxygen-associated reactions in the alkaline condition. Furthermore, the work has explored the energy conversion applications using the functionality of the developed oxygen electrocatalysts.
  •  
5.
  • Bock, Florian, 1994- (author)
  • Combining ab‐initio and machine learning techniques for theoretical simulations of hard nitrides at extreme conditions
  • 2024
  • Doctoral thesis (other academic/artistic)abstract
    • In this thesis I focus on combining the high accuracy of first-principles calculations with modern machine learning methods to make large scale investigations of industrially relevant nitride systems reliable and computationally viable. I study the electronic, thermodynamic and mechanical properties of two families of compounds: Ti1−xAlxN alloys at the operational conditions of industrial cutting tools and ReNx systems at crushing pres-sures comparable to inner earth core conditions. Standard first-principles simulations of materials are usually carried out at zero temperature and pressure, and while many state-of-the-art approaches can take these effects into account, they are usually accompanied by a substantial increase in computational demand. In this thesis I therefore explore the possiblities of studying materials at extreme conditions using machine learning methods with extraordinary efficiency without loss of calculational accuracy. Ti1−xAlxN alloy coatings exhibit exceptional properties due to their inherent ability to spinodally decompose at elevated temperature, leading to age-hardening. Since the cubic B1 phase of Ti1−xAlxN is well-studied, available high-accuracy first-principles data served as both a benchmark and data set on which to train a machine learning interatomic potential. Using the reliable moment tensor potentials, an investigation of the accuracy and efficiency of this approach was carried out in a machine learning study. Building upon the success of this technique, implementation of a learning-on-the-fly (active learning) methodology into a workflow to determine accurate material properties with minimal prior knowledge showed great promise, while maintaining a computational demand up to two orders of magnitude lower than comparable first-principles approaches. Investigations of properties of industrially lesser desired, but sometimes present hexagonal alloy phases of Ti1−xAlxN are also included in this thesis, since knowledge and understanding of all competing phases can help guide development toward improving cutting tool lifetime and performance. Furthermore, while w-Ti1−xAlxN may not be able to compete with its cubic counterpart in terms of hardness, it shows promise for other applications due to its electronic and elastic properties. Metastable ReNx phases are high energy materials due to their covalent N-N and Re-N bonds, leading to exceptional mechanical and electronic properties. Just like diamond, the hardest and arguably most famous metastable mate-rial naturally occurring on earth, they are stabilized by extreme pressures and high temperatures, but can be quenched to ambient conditions. Understanding the formation and existence of these non-equilibrium compounds may hold the key to unlocking a new generation of hard materials. In this thesis, all currently known phases of ReNx compounds have been investigated, encompassing both experimentally observed and theoretically suggested structures. Investigations of the convex hulls across a broad pressure range were carried out, coupled with calculations of phonons in the proposed crystals to determine both energetic and dynamical stability. Overall, the studies included in this thesis focused mainly on investigation of the ground state of ReN2 at higher pressure, where experimental results were deviating from earlier theoretical predictions. Additional research focused on specifically exploring properties and stability of novel ReN6 at synthesis conditions using the active learning workflow to train an interatomic potential. 
  •  
6.
  • Magnuson, Martin, 1965-, et al. (author)
  • Interface bonding of Zr1−xAlxN nanocomposites investigated by x-ray spectroscopies and first principles calculations
  • 2020
  • In: Physical Review Research. - College Park, MD, United States : American Physical Society. - 2643-1564. ; 2:1
  • Journal article (peer-reviewed)abstract
    • The electronic structure, chemical bonding, and interface component in ZrN-AlN nanocomposites formed byphase separation during thin film deposition of metastable Zr1−xAlxN (x = 0.0, 0.12, 0.26, 0.40) are investigatedby resonant inelastic x-ray scattering, x-ray emission, and x-ray absorption spectroscopy and compared to firstprinciples calculations including transitions between orbital angular momentum final states. The experimentalspectra are compared with different interface-slab model systems using first principles all-electron full-potentialcalculations where the core states are treated fully relativistically. As shown in this work, the bulk sensitivity andelement selectivity of x-ray spectroscopy enables one to probe the symmetry and orbital directions at interfacesbetween cubic and hexagonal crystals. We show how the electronic structure develops from local octahedralbond symmetry of cubic ZrN that distorts for increasing Al content into more complex bonding. This results inthree different kinds of bonding originating from semicoherent interfaces with segregated ZrN and lamellar AlNnanocrystalline precipitates. An increasing chemical shift and charge transfer between the elements takes placewith increasing Al content and affects the bond strength and increases resistivity.
  •  
7.
  • Salamania, Janella, 1992-, et al. (author)
  • Elucidating dislocation core structures in titanium nitride through high-resolution imaging and atomistic simulations
  • 2022
  • In: Materials & design. - : Elsevier. - 0264-1275 .- 1873-4197. ; 224
  • Journal article (peer-reviewed)abstract
    • Although titanium nitride (TiN) is among the most extensively studied and thoroughly characterizedthin-film ceramic materials, detailed knowledge of relevant dislocation core structures is lacking. Byhigh-resolution scanning transmission electron microscopy (STEM) of epitaxial single crystal (001)-oriented TiN films, we identify different dislocation types and their core structures. These include, besidesthe expected primary a/2{110}h110i dislocation, Shockley partial dislocations a/6{111}h112i and sessileLomer edge dislocations a/2{100}h011i. Density-functional theory and classical interatomic potentialsimulations complement STEM observations by recovering the atomic structure of the different disloca-tion types, estimating Peierls stresses, and providing insights on the chemical bonding nature at the core.The generated models of the dislocation cores suggest locally enhanced metal–metal bonding, weakenedTi-N bonds, and N vacancy-pinning that effectively reduces the mobilities of {110}h110i and {111}h112idislocations. Our findings underscore that the presence of different dislocation types and their effects onchemical bonding should be considered in the design and interpretations of nanoscale and macroscopicproperties of TiN.
  •  
8.
  • Salamania, Janella, 1992-, et al. (author)
  • High-resolution STEM investigation of the role of dislocations during decomposition of Ti1-xAlxNy
  • 2023
  • In: Scripta Materialia. - : Elsevier. - 1359-6462 .- 1872-8456. ; 229
  • Journal article (peer-reviewed)abstract
    • The defect structures forming during high-temperature decomposition of Ti1-xAlxNy films were investigated through high-resolution scanning transmission electron microscopy. After annealing to 950 °C, misfit edge dislocations a/6〈112〉{111} partial dislocations permeate the interface between TiN-rich and AlN-rich domains to accommodate lattice misfits during spinodal decomposition. The stacking fault energy associated with the partial dislocations decreases with increasing Al content, which facilitates the coherent cubic to wurtzite structure transition of AlN-rich domains. The wurtzite AlN-rich structure is recovered when every third cubic {111} plane is shifted by along the [211] direction. After annealing to 1100 °C, a temperature where coarsening dominates the microstructure evolution, we observe intersections of stacking faults, which form sessile locks at the interface of the TiN- and AlN-rich domains. These observed defect structures facilitate the formation of semicoherent interfaces and contribute to hardening in Ti1-xAlxNy.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view