SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Odelstad Elias) srt2:(2019)"

Sökning: WFRF:(Odelstad Elias) > (2019)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Goldstein, R., et al. (författare)
  • Electron acceleration at comet 67P/Churyumov-Gerasimenko
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 630
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the observation by the Ion and Electron Sensor (IES) of energetic (>1 keV) electrons in the plasma environment of comet 67P Churyumov-Gerasimenko (67P). Most of the electrons in the cometary coma are expected to be of solar wind, photoionization, or electron impact origin and are therefore not expected to exceed some hundreds of eV in energy. During the Vega flybys of comet Halley, 1 keV electrons were also observed, and these are explained as having been accelerated by lower hybrid (LH) waves resulting from the two-stream instability involving the solar wind and pickup-ion flows. These waves resonate with the cyclotron motion of the ions and the longitudinal motion of electrons and are on the order of several Hz, at least in the case of 67P. We postulate that the energetic electrons we have observed intermittently during December 2015 through January 2016 are also the result of such a process and that Landau damping causes the acceleration and subsequent abrupt decrease in this energy (also seen at Halley). We show from this study an event on 19 January 2016 when IES simultaneously observed accelerated electrons, solar wind protons, water ions, and LH waves. A dispersion analysis shows that the ion-ion two-stream instability has positive growth rates for such waves during the observation period.
  •  
2.
  • Vigren, Erik, et al. (författare)
  • The Evolution of the Electron Number Density in the Coma of Comet 67P at the Location of Rosetta from 2015 November through 2016 March
  • 2019
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 881:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A comet ionospheric model assuming the plasma moves radially outward with the same bulk speed as the neutral gas and not being subject to severe reduction through dissociative recombination has previously been tested in a series of case studies associated with the Rosetta mission at comet 67P/Churyumov-Gerasimenko. It has been found that at low activity and within several tens of kilometers from the nucleus such models (which originally were developed for such conditions) generally work well in reproducing observed electron number densities, in particular when plasma production through both photoionization and electron-impact ionization is taken into account. Near perihelion, case studies have, on the contrary, shown that applying similar assumptions overestimates the observed electron number densities at the location of Rosetta. Here we compare Rosetta Orbiter Spectrometer for Ion and Neutral Analysis/Comet Pressure sensor-driven model results with Rosetta Plasma Consortium/Mutual Impedance Probe-derived electron number densities for an extended time period (2015 November through 2016 March) during the postperihelion phase with southern summer/spring. We observe a gradual transition from a state when the model grossly overestimates (by more than a factor of 10) the observations to being in reasonable agreement during 2016 March.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy