SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ogawa S) srt2:(2000-2004)"

Sökning: WFRF:(Ogawa S) > (2000-2004)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Choleris, E, et al. (författare)
  • An estrogen-dependent four-gene micronet regulating social recognition: a study with oxytocin and estrogen receptor-alpha and -beta knockout mice
  • 2003
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 100:10, s. 6192-6197
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogens control many physiological and behavioral processes, some of which are connected to reproduction. These include sexual and other social behaviors. Here we implicate four gene products in a micronet required for mammalian social recognition, through which an individual learns to recognize other individuals. Female mice whose genes for the neuropeptide oxytocin (OT) or the estrogen receptor (ER)-β or ER-α had been selectively “knocked out” were deficient specifically in social recognition and social anxiety. There was a remarkable parallelism among results from three separate gene knockouts. The data strongly suggest the involvement in social recognition of the four genes coding for ER-α, ER-β, OT, and the OT receptor. We thus propose here a four-gene micronet, which links hypothalamic and limbic forebrain neurons in the estrogen control over the OT regulation of social recognition. In our model, estrogens act on the OT system at two levels: through ER-β, they regulate the production of OT in the hypothalamic paraventricular nucleus, and through ER-α, they drive the transcription of the OT receptor in the amygdala. The proper operation of a social recognition mechanism allows for the expression of appropriate social behaviors, aggressive or affiliative.
  •  
3.
  • Forme, F., Ogawa, Y. and Buchert, S. (författare)
  • Naturally enhanced ion acoustic fluctuations seen at different wavelengths.
  • 2001
  • Ingår i: Journal of Geophysical Research. ; 106, s. 21503-21515
  • Tidskriftsartikel (refereegranskat)abstract
    • The authors present European Incoherent Scatter (EISCAT) Svalbard Radar observations of enhanced incoherent scatter ion-acoustic spectra with transmitted frequencies slightly shifted relative to the radar central frequency. This study confirms the initial
  •  
4.
  • Garey, J, et al. (författare)
  • Genetic contributions to generalized arousal of brain and behavior
  • 2003
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 100:19, s. 11019-11022
  • Tidskriftsartikel (refereegranskat)abstract
    • We have identified a generalized arousal component in the behavior of mice. Analyzed by mathematical/statistical approaches across experiments, investigators, and mouse populations, it accounts for about 1/3 of the variance in arousal-related measures. Knockout of the gene coding for the classical estrogen receptor (ER-α), a ligand-activated transcription factor, greatly reduced arousal responses. In contrast, disrupting the gene for a likely gene duplication product, ER-β, did not have these effects. A combination of mathematical and genetic approaches to arousal in an experimentally tractable mammal opens up analysis of a CNS function of considerable theoretical and practical significance.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Ogawa, S, et al. (författare)
  • Estrogen increases locomotor activity in mice through estrogen receptor alpha: specificity for the type of activity
  • 2003
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 144:1, s. 230-239
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogens are known to increase running wheel activity of rodents primarily by acting on the medial preoptic area (mPOA). The mechanisms of this estrogenic regulation of running wheel activity are not completely understood. In particular, little is known about the separate roles of two types of estrogen receptors, ERα and ERβ, both of which are expressed in mPOA neurons. In the present study the effects of continuous estrogen treatment on running wheel activity were examined in male and female mice specifically lacking either the ERα (αERKO) or the ERβ (βERKO) gene. Mice were gonadectomized and 1 wk later implanted with either a low dose (16 ng/d) or a high dose (160 ng/d) of estradiol benzoate (EB) or with a placebo control pellet. Home cage running wheel activity was recorded for 9 d starting 10 d after EB implants. The same mice were also tested for open field activity before and after EB implants. In both female and male αERKO mice, running wheel activity was not different from that in corresponding wild-type (αWT) mice in placebo control groups. In both females and males it was increased by EB only in αWT, not αERKO, mice. In βERKO mice, on the other hand, both doses of EB equally increased running wheel activity in both sexes just as they did in βWT mice. Absolute numbers of daily revolutions of EB-treated groups, however, were significantly lower in βERKO females compared with βWT females. Before EB treatment, gonadectomized αERKO female were significantly less active than αWT mice in open field tests, whereas βERKO females tended to be more active than βWT mice. In male mice there were no effect of ERα or ERβ gene knockout on open field activity. Unlike its effect on running wheel activity, EB treatment induced only a small increase in open field activity in female, but not male, mice. These findings indicate that 1) in both sexes estrogenic regulation of running wheel activity is primarily mediated through the ERα, not the ERβ; and 2) hormone/genotype effects are specific to the type of locomotor activity (i.e. home cage running wheel activity and open field activity) measured.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy