SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ojwang Dickson O.) srt2:(2016)"

Sökning: WFRF:(Ojwang Dickson O.) > (2016)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Myhill, Robert, et al. (författare)
  • On the P-T fO(2) stability of Fe4O5, Fe5O6 and Fe4O5-rich solid solutions
  • 2016
  • Ingår i: Contributions to Mineralogy and Petrology. - : Springer Science and Business Media LLC. - 0010-7999 .- 1432-0967. ; 171:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The high-pressure phases Fe4O5 and Fe506 have recently been added to the list of known iron oxides. As mixed -valence phases, it has been suggested that they could form in the Earth's mantle once the dominant minerals become saturated in ferric iron. The possibility that Fe4O5 could exist in the mantle is also supported by the fact that it forms extensive solid solutions with both Mg2+ and Cr3+. In this study, we present the results of high-pressure and high-temperature multi -anvil experiments performed between 5 and 24 GPa at 1000-1400 degrees C aimed at constraining the stability field of the Fe4O5 phase. We combine these results with published phase equilibria, equation of state and Fe Mg partitioning data to estimate the thermodynamic properties of Fe4O5, Fe5O6 and the (Mg,Fe)(2)Fe2O5 solid solution. Using our thermodynamic model, the oxygen fugacity at which the high-pressure iron oxides become stable is calculated and the redox stability of (Mg,Fe)(2)Fe2O5 in an assemblage of olivine and pyroxene is calculated as a function of the bulk Fe/(Fe + Mg) ratio. Fe4O5 and (Mg,Fe)(2)Fe2O5 are stable at oxygen fugacities higher than the diamond stability field and are, therefore, unlikely to be found as inclusions in diamonds. The stability field of Fe5O6, on the other hand, extends to oxygen fugacities compatible with diamond formation. Using the Mg Fe solid solution model, we show that Fe4O5-structured phases would be restricted to aluminium -poor environments in the mantle such as dunites or silica iron oxide rich sediments transported into the mantle via subduction.
  •  
2.
  • Ojwang, Dickson O., et al. (författare)
  • Structure Characterization and Properties of K-Containing Copper Hexacyanoferrate
  • 2016
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 55:12, s. 5924-5934
  • Tidskriftsartikel (refereegranskat)abstract
    • Copper hexacyanoferrate, Cu-II[Fe-III(CN)(6)](2/3)center dot nH(2)O, was synthesized, and varied amounts of IC ions were inserted via reduction by K2S2O3 (aq). Ideally, the reaction can be written as Cu-II[Fe-III(CN)(6)](2/3)-nH(2)O + 2x/3K(+) + 2x/3e(-)K(+) <-> K-2x/3 Cu-II[Fe-x(II).Fe-1-x(II),(CN)(6)](2/3)-nH(2)O. Infrared, Raman, and Mossbauer spectroscopy studies show that Fe-II is continuously reduced to Fell with increasing x, accompanied by a decrease of the a-axis of the cubic Fn (3) over barm unit cell. Elemental analysis of K by inductively coupled plasma shows that the insertion only begins when a significant fraction similar to 10% of the Fe-III, has already been reduced. Thermogravimetric analysis shows a fast exchange of water with ambient atmosphere and a total weight loss of similar to 26 wt % upon heating to 180 degrees C, above which the structure starts to decompose. The crystal structures of Cu-III[Fe-III(CN)(6)](2/3)center dot nH(2)O and K2/3Cu[Fe(CN)(6)](2/3)center dot nH(2)O were refined using synchrotron X-ray powder diffraction data. In both, one-third of the Fe(CN)(6) groups are vacant, and the octahedron around Cull is completed by water molecules. In the two structures, difference Fourier maps reveal three additional zeolitic water sites (8c, 32f, and 48g) in the center of the cavities formed by the-Cu-N-C-Fe- framework. The K-containing compound shows an increased electron density at two of these sites (32f and 48g), indicating them to be the preferred positions for the K+ ions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy