SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ojwang Dickson O.) srt2:(2021)"

Sökning: WFRF:(Ojwang Dickson O.) > (2021)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Otieno, Austine O., et al. (författare)
  • Pineapple peel biochar and lateritic soil as adsorbents for recovery of ammonium nitrogen from human urine
  • 2021
  • Ingår i: Journal of Environmental Management. - : Elsevier. - 0301-4797 .- 1095-8630. ; 293
  • Tidskriftsartikel (refereegranskat)abstract
    • Human urine is a rich source of nitrogen which can be captured to supplement the existing sources of nitrogen fertilizers thus contributing to enhanced crop production. However, urine is the major contributor of macronutrients in municipal wastewater flows resulting into eutrophication of the receiving water bodies. Herein, pineapple peel biochar (PPB), and lateritic soil (LS) adsorbents were prepared for the safe removal of ammonium nitrogen (NH4+-N) from human urine solutions. Physicochemical properties of PPB, and LS were characterized by scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) to investigate the relationship of their properties with NH4+-N adsorption. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models were employed to correlate the experimental equilibrium adsorption data. The effect of contact time and initial concentration of NH4+-N adsorption was also evaluated. The D-R isotherm model best described the behaviour of NH4+-N adsorption on both PPB and LS based on the coefficient of correlation values. This model showed that the adsorption of NH4+-N on both samples was a physical process with PPB and LS having mean surface adsorption energies of 1.826 × 10−2, and 1.622 × 10−2 kJ/mol, respectively. The PPB exhibited a slightly higher adsorption capacity for NH4+-N (13.40 mg/g) than LS (10.73 mg/g) with the difference attributed to its higher surface area and porosity. These values are good indicators for assessing the effectiveness of the materials for adsorption of NH4+-N from human urine.
  •  
2.
  • Görlin, Mikaela, et al. (författare)
  • Aging and Charge Compensation Effects of the Rechargeable Aqueous Zinc/Copper Hexacyanoferrate Battery Elucidated Using In Situ X-ray Techniques
  • 2021
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:50, s. 59962-59974
  • Tidskriftsartikel (refereegranskat)abstract
    • The zinc/copper hexacyanoferrate (Zn/CuHCF) cell has gained attention as an aqueous rechargeable zinc-ion battery (ZIB) owing to its open framework, excellent rate capability, and high safety. However, both the Zn anode and the CuHCF cathode show unavoidable signs of aging during cycling, though the underlying mechanisms have remained somewhat ambiguous. Here, we present an in-depth study of the CuHCF cathode by employing various X-ray spectroscopic techniques. This allows us to distinguish between structure-related aging effects and charge compensation processes associated with electroactive metal centers upon Zn2+ ion insertion/deinsertion. By combining high-angle annular dark-field-scanning electron transmission microscopy, X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy, and elemental analysis, we reconstruct the picture of both the bulk and the surface. First, we identify a set of previously debated X-ray diffraction peaks appearing at early stages of cycling (below 200 cycles) in CuHCF. Our data suggest that these peaks are unrelated to hypothetical ZnxCu1–xHCF phases or to oxidic phases, but are caused by partial intercalation of ZnSO4 into graphitic carbon. We further conclude that Cu is the unstable species during aging, whose dissolution is significant at the surface of the CuHCF particles. This triggers Zn2+ ions to enter newly formed Cu vacancies, in addition to native Fe vacancies already present in the bulk, which causes a reduction of nearby metal sites. This is distinct from the charge compensation process where both the Cu2+/Cu+ and Fe3+/Fe2+ redox couples participate throughout the bulk. By tracking the K-edge fluorescence using operando XAS coupled with cyclic voltammetry, we successfully link the aging effect to the activation of the Fe3+/Fe2+ redox couple as a consequence of Cu dissolution. This explains the progressive increase in the voltage of the charge/discharge plateaus upon repeated cycling. We also find that SO42– anions reversibly insert into CuHCF during charge. Our work clarifies several intriguing structural and redox-mediated aging mechanisms in the CuHCF cathode and pinpoints parameters that correlate with the performance, which will hold importance for the development of future Prussian blue analogue-type cathodes for aqueous rechargeable ZIBs
  •  
3.
  • Menon, Ashok S., et al. (författare)
  • Synthetic Pathway Determines the Nonequilibrium Crystallography of Li- and Mn-Rich Layered Oxide Cathode Materials
  • 2021
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 4:2, s. 1924-1935
  • Tidskriftsartikel (refereegranskat)abstract
    • Li- and Mn-rich layered oxides show significant promise as electrode materials for future Li-ion batteries. However, an accurate description of its crystallography remains elusive, with both single-phase solid solution and multiphase structures being proposed for high performing materials such as Li1.2Mn0.54Ni0.13Co0.13O2. Herein, we report the synthesis of single- and multiphase variants of this material through sol-gel and solid-state methods, respectively, and demonstrate that its crystallography is a direct consequence of the synthetic route and not necessarily an inherent property of the composition, as previously argued. This was accomplished via complementary techniques that probe the bulk and local structure followed by in situ methods to map the synthetic progression. As the electrochemical performance and anionic redox behavior are often rationalized on the basis of the presumed crystal structure, clarifying the structural ambiguities is an important step toward harnessing its potential as an electrode material.
  •  
4.
  • Ojwang, Dickson O., et al. (författare)
  • Moisture-Driven Degradation Pathways in Prussian White Cathode Material for Sodium-Ion Batteries
  • 2021
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:8, s. 10054-10063
  • Tidskriftsartikel (refereegranskat)abstract
    • The high-theoretical-capacity (∼170 mAh/g) Prussian white (PW), NaxFe[Fe(CN)6]y·nH2O, is one of the most promising candidates for Na-ion batteries on the cusp of commercialization. However, it has limitations such as high variability of reported stable practical capacity and cycling stability. A key factor that has been identified to affect the performance of PW is water content in the structure. However, the impact of airborne moisture exposure on the electrochemical performance of PW and the chemical mechanisms leading to performance decay have not yet been explored. Herein, we for the first time systematically studied the influence of humidity on the structural and electrochemical properties of monoclinic hydrated (M-PW) and rhombohedral dehydrated (R-PW) Prussian white. It is identified that moisture-driven capacity fading proceeds via two steps, first by sodium from the bulk material reacting with moisture at the surface to form sodium hydroxide and partial oxidation of Fe2+ to Fe3+. The sodium hydroxide creates a basic environment at the surface of the PW particles, leading to decomposition to Na4[Fe(CN)6] and iron oxides. Although the first process leads to loss of capacity, which can be reversed, the second stage of degradation is irreversible. Over time, both processes lead to the formation of a passivating surface layer, which prevents both reversible and irreversible capacity losses. This study thus presents a significant step toward understanding the large performance variations presented in the literature for PW. From this study, strategies aimed at limiting moisture-driven degradation can be designed and their efficacy assessed.
  •  
5.
  • Valvo, Mario, et al. (författare)
  • 3 - Impact of nanomaterials on Li-ion battery anodes
  • 2021
  • Ingår i: Nanomaterials for Electrochemical Energy Storage. - : Elsevier. ; , s. 55-98
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Anodic materials play a key role in the development of Li-ion batteries, as they influence their overall performances. Demand for improved energy and power densities, enhanced safety, and reduction in environmental impact have driven the attention toward progressive use of alternative materials with respect to state-of-the-art graphite. Developing advanced anodes requires a clear understanding and full exploitation of their underlying electrochemical mechanisms (e.g., Li insertion, Li-alloying, and conversion reactions). Nanostructured anode materials can help in achieving this goal and addressing issues to enable alternative candidates beyond graphite. The impact of nanomaterials on the development of Li-ion battery anodes is here discussed through a two-fold perspective focused on the performances enhancement and critical assessment of practical electrochemical energy storage applications of industrial relevance. A summary of the requirements to realize advanced anodes is provided at the beginning of the chapter, while geometrical aspects and dimensionality of nanostructures, together with their influence on the electrochemical properties of anodic materials and corresponding electrodes, are examined in the subsequent sections. The advantages and disadvantages of nanostructured anode materials are also discussed in detail, followed by examples of rational electrode design and composites for the fabrication of advanced nanostructured anodes. Finally, various anode materials are considered for these purposes and examples of 3D micro-battery anodes are also included.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy