SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Oksman Kristiina) srt2:(2020-2024)"

Sökning: WFRF:(Oksman Kristiina) > (2020-2024)

  • Resultat 1-10 av 59
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Antlauf, Mathis, et al. (författare)
  • Thermal Conductivity of Cellulose Fibers in Different Size Scales and Densities
  • 2021
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 22:9, s. 3800-3809
  • Tidskriftsartikel (refereegranskat)abstract
    • Considering the growing use of cellulose in various applications, knowledge and understanding of its physical properties become increasingly important. Thermal conductivity is a key property, but its variation with porosity and density is unknown, and it is not known if such a variation is affected by fiber size and temperature. Here, we determine the relationships by measurements of the thermal conductivity of cellulose fibers (CFs) and cellulose nanofibers (CNFs) derived from commercial birch pulp as a function of pressure and temperature. The results show that the thermal conductivity varies relatively weakly with density (ρsample = 1340–1560 kg m–3) and that its temperature dependence is independent of density, porosity, and fiber size for temperatures in the range 80–380 K. The universal temperature and density dependencies of the thermal conductivity of a random network of CNFs are described by a third-order polynomial function (SI-units): κCNF = (0.0787 + 2.73 × 10–3·T – 7.6749 × 10–6·T2 + 8.4637 × 10–9·T3)·(ρsample/ρ0)2, where ρ0 = 1340 kg m–3 and κCF = 1.065·κCNF. Despite a relatively high degree of crystallinity, both CF and CNF samples show amorphous-like thermal conductivity, that is, it increases with increasing temperature. This appears to be due to the nano-sized elementary fibrils of cellulose, which explains that the thermal conductivity of CNFs and CFs shows identical behavior and differs by only ca. 6%. The nano-sized fibrils effectively limit the phonon mean free path to a few nanometers for heat conduction across fibers, and it is only significantly longer for highly directed heat conduction along fibers. This feature of cellulose makes it easier to apply in applications that require low thermal conductivity combined with high strength; the weak density dependence of the thermal conductivity is a particularly useful property when the material is subjected to high loads. The results for thermal conductivity also suggest that the crystalline structures of cellulose remain stable up to at least 0.7 GPa.
  •  
2.
  • Baş, Yağmur, et al. (författare)
  • Preparation and Characterization of Softwood and Hardwood Nanofibril Hydrogels: Toward Wound Dressing Applications
  • 2023
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 24:12, s. 5605-5619
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrogels of cellulose nanofibrils (CNFs) are promising wound dressing candidates due to their biocompatibility, high water absorption, and transparency. Herein, two different commercially available wood species, softwood and hardwood, were subjected to TEMPO-mediated oxidation to proceed with delignification and oxidation in a one-pot process, and thereafter, nanofibrils were isolated using a high-pressure microfluidizer. Furthermore, transparent nanofibril hydrogel networks were prepared by vacuum filtration. Nanofibril properties and network performance correlated with oxidation were investigated and compared with commercially available TEMPO-oxidized pulp nanofibrils and their networks. Softwood nanofibril hydrogel networks exhibited the best mechanical properties, and in vitro toxicological risk assessment showed no detrimental effect for any of the studied hydrogels on human fibroblast or keratinocyte cells. This study demonstrates a straightforward processing route for direct oxidation of different wood species to obtain nanofibril hydrogels for potential use as wound dressings, with softwood having the most potential.
  •  
3.
  • Berglund, Linn, et al. (författare)
  • Seaweed-Derived Alginate–Cellulose Nanofiber Aerogel for Insulation Applications
  • 2021
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:29, s. 34899-34909
  • Tidskriftsartikel (refereegranskat)abstract
    • The next generation of green insulation materials is being developed to provide safer and more sustainable alternatives to conventional materials. Bio-based cellulose nanofiber (CNF) aerogels offer excellent thermal insulation properties; however, their high flammability restricts their application. In this study, the design concept for the development of a multifunctional and non-toxic insulation material is inspired by the natural composition of seaweed, comprising both alginate and cellulose. The approach includes three steps: first, CNFs were separated from alginate-rich seaweed to obtain a resource-efficient, fully bio-based, and inherently flame-retardant material; second, ice-templating, followed by freeze-drying, was employed to form an anisotropic aerogel for effective insulation; and finally, a simple crosslinking approach was applied to improve the flame-retardant behavior and stability. At a density of 0.015 g cm–3, the lightweight anisotropic aerogels displayed favorable mechanical properties, including a compressive modulus of 370 kPa, high thermal stability, low thermal conductivity (31.5 mW m–1 K–1), considerable flame retardancy (0.053 mm s–1), and self-extinguishing behavior, where the inherent characteristics were considerably improved by crosslinking. Different concentrations of the crosslinker altered the mechanical properties, while the anisotropic structure influenced the mechanical properties, combustion velocity, and to some extent thermal conductivity. Seaweed-derived aerogels possess intrinsic characteristics that could serve as a template for the future development of sustainable high-performance insulation materials. 
  •  
4.
  • Berglund, Linn, et al. (författare)
  • Self-Assembly of Nanocellulose Hydrogels Mimicking Bacterial Cellulose for Wound Dressing Applications
  • 2023
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 24:5, s. 2264-2277
  • Tidskriftsartikel (refereegranskat)abstract
    • The self-assembly of nanocellulose in the form of cellulose nanofibers (CNFs) can be accomplished via hydrogen-bonding assistance into completely bio-based hydrogels. This study aimed to use the intrinsic properties of CNFs, such as their ability to form strong networks and high absorption capacity and exploit them in the sustainable development of effective wound dressing materials. First, TEMPO-oxidized CNFs were separated directly from wood (W-CNFs) and compared with CNFs separated from wood pulp (P-CNFs). Second, two approaches were evaluated for hydrogel self-assembly from W-CNFs, where water was removed from the suspensions via evaporation through suspension casting (SC) or vacuum-assisted filtration (VF). Third, the W-CNF-VF hydrogel was compared to commercial bacterial cellulose (BC). The study demonstrates that the self-assembly via VF of nanocellulose hydrogels from wood was the most promising material as wound dressing and displayed comparable properties to that of BC and strength to that of soft tissue.
  •  
5.
  • Berglund, Linn, et al. (författare)
  • Toward eco-efficient production of natural nanofibers from industrial residue : Eco-design and quality assessment
  • 2020
  • Ingår i: Journal of Cleaner Production. - : Elsevier. - 0959-6526 .- 1879-1786. ; 255
  • Tidskriftsartikel (refereegranskat)abstract
    • Conversion of bio-based industrial residues into high value-added products such as natural nanofibers is advantageous from an environmental and economic perspective, promoting resource efficiency along with the utilization of renewable materials. However, in order to employ the benefits of the raw material; its eco-efficient production should further be developed. Within this context, eco-design optimization through life cycle assessment (LCA) combined with life cycle costing (LCC) were applied to target eco-efficient production of natural nanofibers from carrot residue, along with quality assessment. The initial production steps included pretreatment combined mechanical nanofibrillation via ultrafine grinding, where the largest contributors to the environmental impact were identified as chemicals and energy. These were targeted by omitting the alkali pretreatment step and instead applying direct bleaching prior to nanofibrillation. After eco-design optimization, the yield increased while the energy, chemical, and water use significantly decreased. Therefore, a reduced environmental impact of more than 75% each for carbon footprint, freshwater ecotoxicity, and human toxicity was shown, along with a cost reduction of more than 50%. The use of carrot residue displayed an efficient conversion into natural nanofibers that was further promoted with the use of eco-design, yet with sustained functionality and nanoscaled dimensions, thus promoting resource-efficiency and natural nanofiber implementation in a wide range of promising bio-based applications.
  •  
6.
  • Berglund, Linn, et al. (författare)
  • Utilizing the Natural Composition of Brown Seaweed for the Preparation of Hybrid Ink for 3D Printing of Hydrogels
  • 2020
  • Ingår i: ACS Applied Bio Materials. - : American Chemical Society (ACS). - 2576-6422. ; 3:9, s. 6510-6520
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aims to utilize the natural composition of brown seaweed by deriving alginate and cellulose concurrently from the stipe (stem-like) and blade (leaf-like) structures of the seaweed; further, this is followed by fibrillation for the direct and resource-efficient preparation of alginate/cellulose nanofiber (CNF) hybrid inks for three-dimensional (3D) printing of hydrogels. The efficiency of the fibrillation process was evaluated, and the obtained gels were further studied with regard to their rheological behavior. As a proof of concept, the inks were 3D printed into discs, followed by cross-linking with CaCl2 to form biomimetic hydrogels. It was shown that the nanofibrillation process from both seaweed structures is very energy-efficient, with an energy demand lower than 1.5 kW h/kg, and with CNF dimensions below 15 nm. The inks displayed excellent shear-thinning behavior and cytocompatibility and were successfully printed into 3D discs that, after cross-linking, exhibited an interconnected network structure with favorable mechanical properties, and a cell viability of 71%. The designed 3D biomimetic hydrogels offers an environmentally benign, cost-efficient, and biocompatible material platform with a favorable structure for the development of biomedical devices, such as 3D bio printing of soft tissues.
  •  
7.
  • Butylina, Svetlana, et al. (författare)
  • Cellulose Nanocomposite Hydrogels : From Formulation to Material Properties
  • 2020
  • Ingår i: Frontiers in Chemistry. - : Frontiers Media S.A.. - 2296-2646. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Poly(vinyl alcohol) (PVA) hydrogels produced using the freeze-thaw method have attracted attention for a long time since their first preparation in 1975. Due to the importance of polymer intrinsic features and the advantages associated with them, they are very suitable for biomedical applications such as tissue engineering and drug delivery systems. On the other hand, there is an increasing interest in the use of biobased additives such as cellulose nanocrystals, CNC. This study focused on composite hydrogels which were produced by using different concentrations of PVA (5 and 10%) and CNC (1 and 10 wt.%), also, pure PVA hydrogels were used as references. The main goal was to determine the impact of both components on mechanical, thermal, and water absorption properties of composite hydrogels as well as on morphology and initial water content. It was found that PVA had a dominating effect on all hydrogels. The effect of the CNC addition was both concentration-dependent and case-dependent. As a general trend, addition of CNC decreased the water content of the prepared hydrogels, decreased the crystallinity of the PVA, and increased the hydrogels compression modulus and strength to some extent. The performance of composite hydrogels in a cyclic compression test was studied; the hydrogel with low PVA (5) and high CNC (10) content showed totally reversible behavior after 10 cycles.
  •  
8.
  • Eichhorn, S. J., et al. (författare)
  • Current international research into cellulose as a functional nanomaterial for advanced applications
  • 2022
  • Ingår i: Journal of Materials Science. - : Springer Nature. - 0022-2461 .- 1573-4803. ; 57:10, s. 5697-5767
  • Tidskriftsartikel (refereegranskat)abstract
    • This review paper provides a recent overview of current international research that is being conducted into the functional properties of cellulose as a nanomaterial. A particular emphasis is placed on fundamental and applied research that is being undertaken to generate applications, which are now becoming a real prospect given the developments in the field over the last 20 years. A short introduction covers the context of the work, and definitions of the different forms of cellulose nanomaterials (CNMs) that are most widely studied. We also address the terminology used for CNMs, suggesting a standard way to classify these materials. The reviews are separated out into theme areas, namely healthcare, water purification, biocomposites, and energy. Each section contains a short review of the field within the theme and summarizes recent work being undertaken by the groups represented. Topics that are covered include cellulose nanocrystals for directed growth of tissues, bacterial cellulose in healthcare, nanocellulose for drug delivery, nanocellulose for water purification, nanocellulose for thermoplastic composites, nanocellulose for structurally colored materials, transparent wood biocomposites, supercapacitors and batteries.
  •  
9.
  • Eskilson, Olof, 1992-, et al. (författare)
  • Nanocellulose composite wound dressings for real-time pH wound monitoring
  • 2023
  • Ingår i: Materials Today Bio. - : Elsevier. - 2590-0064. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • The skin is the largest organ of the human body. Wounds disrupt the functions of the skin and can have catastrophic consequences for an individual resulting in significant morbidity and mortality. Wound infections are common and can substantially delay healing and can result in non-healing wounds and sepsis. Early diagnosis and treatment of infection reduce risk of complications and support wound healing. Methods for monitoring of wound pH can facilitate early detection of infection. Here we show a novel strategy for integrating pH sensing capabilities in state-of-the-art hydrogel-based wound dressings fabricated from bacterial nanocellulose (BC). A high surface area material was developed by self-assembly of mesoporous silica nanoparticles (MSNs) in BC. By encapsulating a pH-responsive dye in the MSNs, wound dressings for continuous pH sensing with spatiotemporal resolution were developed. The pH responsive BC-based nanocomposites demonstrated excellent wound dressing properties, with respect to conformability, mechanical properties, and water vapor transmission rate. In addition to facilitating rapid colorimetric assessment of wound pH, this strategy for generating functional BC-MSN nanocomposites can be further be adapted for encapsulation and release of bioactive compounds for treatment of hard-to-heal wounds, enabling development of novel wound care materials.
  •  
10.
  • Fiber Reinforced Composites : Constituents, Compatibility, Perspectives, and Applications
  • 2021
  • Samlingsverk (redaktörskap) (övrigt vetenskapligt/konstnärligt)abstract
    • Polymer-based fibre-reinforced composites FRC’s have now come out as a major class of structural materials being used or regarded as substituent’s for metals in several critical components in space, automotive and other industries (marine, and sports goods) owing to their low density, strength-weight ratio, and fatigue strength. FRC’s have several commercial as well as industrial applications ranging from aircraft, space, automotive, sporting goods, marine, and infrastructure. The above-mentioned applications of FRC’s clearly reveal that FRC’s have the potential to be used in a broad range of different engineering fields with the added advantages of low density, and resistance to corrosion compared to conventional metallic and ceramic composites. However, for scientists/researchers/R&D’s to fabricate FRC’s with such potential there should be careful and precise design followed by suitable process development based on properties like mechanical, physical, and thermal that are unique to each application. Hence the last few decades have witnessed considerable research on fibre reinforced composites. Fibre Reinforced Composites: Constituents, Compatibility, Perspectives and Applications presents a widespread all-inclusive review on fibre-reinforced composites ranging from the different types of processing techniques to chemical modification of the fibre surface to enhance the interfacial adhesion between the matrix and fibre and the structure-property relationship. It illustrates how high value composites can be produced by efficient and sustainable processing methods by selecting different constituents [fibres and resins]. Researchers in academia working in composites and accompanying areas [materials characterisation] and industrial manufacturers who need information on composite constituents and how they relate to each other for a certain application will find the book extremely useful when they need to make decisions about materials selection for their products.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 59
Typ av publikation
tidskriftsartikel (50)
doktorsavhandling (4)
konferensbidrag (2)
bokkapitel (2)
samlingsverk (redaktörskap) (1)
Typ av innehåll
refereegranskat (51)
övrigt vetenskapligt/konstnärligt (8)
Författare/redaktör
Oksman, Kristiina, 1 ... (53)
Geng, Shiyu (19)
Berglund, Linn (14)
Sain, Mohini (12)
Wei, Jiayuan (8)
Jonasson, Simon (6)
visa fler...
Patel, Mitul Kumar (6)
Niittylä, Totte (5)
Oksman, Kristiina (5)
Thomas, Bony (5)
Tjong, Jimi (5)
Rakar, Jonathan, 198 ... (4)
Bünder, Anne (4)
Hedlund, Jonas (3)
Junker, Johan, 1980- (3)
George, Gejo (3)
Zattarin, Elisa, Dok ... (3)
Teleman, Anita (3)
Pitkänen, Olli (3)
Pakharenko, Viktoriy ... (3)
Schwendemann, Daniel (3)
Zaccone, Marta (3)
Aili, Daniel, 1977- (2)
Kordás, Krisztian (2)
Baş, Yağmur (2)
Sotra, Zeljana (2)
Rinklake, Ivana (2)
Khalaf, Hazem, 1981- (2)
Nissilä, Tuukka (2)
Squinca, Paula (2)
Starkenberg, Annika, ... (2)
Junker, Johan (2)
Maspoch, Maria Lluïs ... (2)
Hanna, Kristina (2)
Hassan, Mohammad L (2)
Joseph, Kuruvilla (2)
Wilson, Runcy (2)
Appukuttan, Saritha (2)
Singh, Chandra Veer (2)
Herrera, Natalia, 19 ... (2)
Hassan, Enas A. (2)
Hietala, Maiju (2)
Liimatainen, Henrikk ... (2)
Monti, Marco (2)
Konar, Samir (2)
Dias, Otavio Augusto ... (2)
Mukherjee, Sankha (2)
De Brauwer, Laurens (2)
Nair, Rakesh (2)
Rosenstock Völtz, Lu ... (2)
visa färre...
Lärosäte
Luleå tekniska universitet (59)
Linköpings universitet (5)
Sveriges Lantbruksuniversitet (5)
RISE (3)
Örebro universitet (2)
Umeå universitet (1)
visa fler...
Kungliga Tekniska Högskolan (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (59)
Forskningsämne (UKÄ/SCB)
Teknik (53)
Naturvetenskap (11)
Lantbruksvetenskap (4)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy