SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Olofsson Charlotta S 1971) srt2:(2020-2023)"

Sökning: WFRF:(Olofsson Charlotta S 1971) > (2020-2023)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bauzá-Thorbrügge, Marco, et al. (författare)
  • Adipocyte-specific ablation of the Ca2+ pump SERCA2 impairs whole-body metabolic function and reveals the diverse metabolic flexibility of white and brown adipose tissue.
  • 2022
  • Ingår i: Molecular metabolism. - : Elsevier BV. - 2212-8778. ; 63
  • Tidskriftsartikel (refereegranskat)abstract
    • Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) transports Ca2+ from the cytosol into the endoplasmic retitculum (ER) and is essential for appropriate regulation of intracellular Ca2+ homeostasis. The objective of this study was to test the hypothesis that SERCA pumps are involved in the regulation of white adipocyte hormone secretion and other aspects of adipose tissue function and that this control is disturbed in obesity-induced type-2 diabetes.SERCA expression was measured in isolated human and mouse adipocytes as well as in whole mouse adipose tissue by Western blot and RT-qPCR. To test the significance of SERCA2 in adipocyte functionality and whole-body metabolism, we generated adipocyte-specific SERCA2 knockout mice. The mice were metabolically phenotyped by glucose tolerance and tracer studies, histological analyses, measurements of glucose-stimulated insulin release in isolated islets, and gene/protein expression analyses. We also tested the effect of pharmacological SERCA inhibition and genetic SERCA2 ablation in cultured adipocytes. Intracellular and mitochondrial Ca2+ levels were recorded with dual-wavelength ratio imaging and mitochondrial function was assessed by Seahorse technology.We demonstrate that SERCA2 is downregulated in white adipocytes from patients with obesity and type-2 diabetes as well as in adipocytes from diet-induced obese mice. SERCA2-ablated adipocytes display disturbed Ca2+ homeostasis associated with upregulated ER stress markers and impaired hormone release. These adipocyte alterations are linked to mild lipodystrophy, reduced adiponectin levels, and impaired glucose tolerance. Interestingly, adipocyte-specific SERCA2 ablation leads to increased glucose uptake in white adipose tissue while the glucose uptake is reduced in brown adipose tissue. This dichotomous effect on glucose uptake is due to differently regulated mitochondrial function. In white adipocytes, SERCA2 deficiency triggers an adaptive increase in fibroblast growth factor 21 (FGF21), increased mitochondrial uncoupling protein 1 (UCP1) levels, and increased oxygen consumption rate (OCR). In contrast, brown SERCA2 null adipocytes display reduced OCR despite increased mitochondrial content and UCP1 levels compared to wild type controls.Our data suggest causal links between reduced white adipocyte SERCA2 levels, deranged adipocyte Ca2+ homeostasis, adipose tissue dysfunction and type-2 diabetes.
  •  
3.
  • Brännmark, Cecilia, et al. (författare)
  • Adiponectin is secreted via caveolin 1-dependent mechanisms in white adipocytes
  • 2020
  • Ingår i: Journal of Endocrinology. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 247:1, s. 25-38
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we have investigated the role of the protein caveolin 1 (Cav1) and caveolae in the secretion of the white adipocyte hormone adiponectin. Using mouse primary subcutaneous adipocytes genetically depleted of Cav1, we show that the adiponectin secretion, stimulated either adrenergically or by insulin, is abrogated while basal (unstimulated) release of adiponectin is elevated. Adiponectin secretion is similarly affected in wildtype mouse and human adipocytes where the caveolae structure was chemically disrupted. The altered ex vivo secretion in adipocytes isolated from Cav1 null mice is accompanied by lowered serum levels of the high-molecular weight (HMW) form of adiponectin, whereas the total concentration of adiponectin is unaltered. Interestingly, levels of HMW adiponectin are maintained in adipose tissue from Cav1-depleted mice, signifying that a secretory defect is present. The gene expression of key regulatory proteins known to be involved in cAMP/adrenergically triggered adiponectin exocytosis (the beta-3-adrenergic receptor and exchange protein directly activated by cAMP) remains intact in Cav1 null adipocytes. Microscopy and fractionation studies indicate that adiponectin vesicles do not co-localise with Cav1 but that some vesicles are associated with a specific fraction of caveolae. Our studies propose that Cav1 has an important role in secretion of HMW adiponectin, even though adiponectin-containing vesicles are not obviously associated with this protein. We suggest that Cav1, and/or the caveolae domain, is essential for the organisation of signalling pathways involved in the regulation of HMW adiponectin exocytosis, a function that is disrupted in Cav1/caveolae-depleted adipocytes.
  •  
4.
  • Cinato, Mathieu, et al. (författare)
  • Cardiac Plin5 interacts with SERCA2 and promotes calcium handling and cardiomyocyte contractility
  • 2023
  • Ingår i: Life Science Alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The adult heart develops hypertrophy to reduce ventricular wall stress and maintain cardiac function in response to an increased workload. Although pathological hypertrophy generally prog-resses to heart failure, physiological hypertrophy may be car-dioprotective. Cardiac-specific overexpression of the lipid-droplet protein perilipin 5 (Plin5) promotes cardiac hypertrophy, but it is unclear whether this response is beneficial. We analyzed RNA -sequencing data from human left ventricle and showed that car-diac PLIN5 expression correlates with up-regulation of cardiac contraction-related processes. To investigate how elevated cardiac Plin5 levels affect cardiac contractility, we generated mice with cardiac-specific overexpression of Plin5 (MHC-Plin5 mice). These mice displayed increased left ventricular mass and cardiomyocyte size but preserved heart function. Quantitative proteomics identified sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) as a Plin5-interacting protein. In situ proximity ligation assay further confirmed the Plin5/SERCA2 interaction. Live imaging showed in-creases in intracellular Ca2+ release during contraction, Ca2+ removal during relaxation, and SERCA2 function in MHC-Plin5 versus WT cardiomyocytes. These results identify a role of Plin5 in improving cardiac contractility through enhanced Ca2+ signaling.
  •  
5.
  • Eerola, Kim, 1982, et al. (författare)
  • Hindbrain insulin controls feeding behavior
  • 2022
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 66
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Pancreatic insulin was discovered a century ago, and this discovery led to the first lifesaving treatment for diabetes. While still controversial, nearly one hundred published reports suggest that insulin is also produced in the brain, with most focusing on hypothalamic or cortical insulin-producing cells. However, specific function for insulin produced within the brain remains poorly understood. Here we identify insulin expression in the hindbrain's dorsal vagal complex (DVC), and determine the role of this source of insulin in feeding and metabolism, as well as its response to diet-induced obesity in mice. Methods: To determine the contribution of Ins2-producing neurons to feeding behavior in mice, we used the cross of transgenic RipHER-cre mouse and channelrhodopsin-2 expressing animals, which allowed us to optogenetically stimulate neurons expressing Ins2 in vivo. To confirm the presence of insulin expression in Rip-labeled DVC cells, in situ hybridization was used. To ascertain the specific role of insulin in effects discovered via optogenetic stimulation a selective, CNS applied, insulin receptor antagonist was used. To understand the physiological contribution of insulin made in the hindbrain a virogenetic knockdown strategy was used. Results: Insulin gene expression and presence of insulin-promoter driven fluorescence in rat insulin promoter (Rip)-transgenic mice were detected in the hypothalamus, but also in the DVC. Insulin mRNA was present in nearly all fluorescently labeled cells in DVC. Diet-induced obesity in mice altered brain insulin gene expression, in a neuroanatomically divergent manner; while in the hypothalamus the expected obesity-induced reduction was found, in the DVC diet-induced obesity resulted in increased expression of the insulin gene. This led us to hypothesize a potentially divergent energy balance role of insulin in these two brain areas. To determine the acute impact of activating insulin-producing neurons in the DVC, optic stimulation of light-sensitive channelrhodopsin 2 in Rip-transgenic mice was utilized. Optogenetic photoactivation induced hyperphagia after acute activation of the DVC insulin neurons. This hyperphagia was blocked by central application of the insulin receptor antagonist S961, suggesting the feeding response was driven by insulin. To determine whether DVC insulin has a necessary contribution to feeding and meta-bolism, virogenetic insulin gene knockdown (KD) strategy, which allows for site-specific reduction of insulin gene expression in adult mice, was used. While chow-fed mice failed to reveal any changes of feeding or thermogenesis in response to the KD, mice challenged with a high-fat diet consumed less food. No changes in body weight were identified, possibly resulting from compensatory reduction in thermogenesis. Conclusions: Together, our data suggest an important role for hindbrain insulin and insulin-producing cells in energy homeostasis. (c) 2022 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
6.
  • Komai, Ali, 1987, et al. (författare)
  • An Approach to Monitor Exocytosis in White Adipocytes
  • 2021
  • Ingår i: Exocytosis and Endocytosis. Florence Niedergang, Nicolas Vitale, Stéphane Gasman (red.). - New York, NY : Springer. - 1064-3745. - 9781071610435 ; , s. 203-222
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Exocytosis, the fusion of vesicles with the plasma membrane, can be measured with the patch-clamp technique as increases in membrane capacitance. Here we provide detailed information on how to monitor white adipocyte exocytosis using this method. We describe how to isolate the stromal vascular fraction of cells (SVF) within adipose tissue and how to differentiate SVF and cultured 3T3-L1 cells into adipocytes suitable for patch-clamp studies. We also give detailed protocols of how to record and analyze exocytosis in the differentiated cells. © 2021, Springer Science+Business Media, LLC, part of Springer Nature.
  •  
7.
  • Lövfors, William, 1991-, et al. (författare)
  • A comprehensive mechanistic model of adipocyte signaling with layers of confidence
  • 2023
  • Ingår i: npj Systems Biology and Applications. - : Springer Nature. - 2056-7189. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Adipocyte signaling, normally and in type 2 diabetes, is far from fully understood. We have earlier developed detailed dynamic mathematical models for several well-studied, partially overlapping, signaling pathways in adipocytes. Still, these models only cover a fraction of the total cellular response. For a broader coverage of the response, large-scale phosphoproteomic data and systems level knowledge on protein interactions are key. However, methods to combine detailed dynamic models with large-scale data, using information about the confidence of included interactions, are lacking. We have developed a method to first establish a core model by connecting existing models of adipocyte cellular signaling for: (1) lipolysis and fatty acid release, (2) glucose uptake, and (3) the release of adiponectin. Next, we use publicly available phosphoproteome data for the insulin response in adipocytes together with prior knowledge on protein interactions, to identify phosphosites downstream of the core model. In a parallel pairwise approach with low computation time, we test whether identified phosphosites can be added to the model. We iteratively collect accepted additions into layers and continue the search for phosphosites downstream of these added layers. For the first 30 layers with the highest confidence (311 added phosphosites), the model predicts independent data well (70–90% correct), and the predictive capability gradually decreases when we add layers of decreasing confidence. In total, 57 layers (3059 phosphosites) can be added to the model with predictive ability kept. Finally, our large-scale, layered model enables dynamic simulations of systems-wide alterations in adipocytes in type 2 diabetes. 
  •  
8.
  • Lövfors, William, et al. (författare)
  • A systems biology analysis of adrenergically stimulated adiponectin exocytosis in white adipocytes
  • 2021
  • Ingår i: Journal of Biological Chemistry. - : Elsevier BV. - 0021-9258 .- 1083-351X. ; 297:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Circulating levels of the adipocyte hormone adiponectin are typically reduced in obesity, and this deficiency has been linked to metabolic diseases. It is thus important to understand the mechanisms controlling adiponectin exocytosis. This understanding is hindered by the high complexity of both the available data and the underlying signaling network. To deal with this complexity, we have previously investigated how different intracellular concentrations of Ca2+, cAMP, and ATP affect adiponectin exocytosis, using both patch-clamp recordings and systems biology mathematical modeling. Recent work has shown that adiponectin exocytosis is physiologically triggered via signaling pathways involving adrenergic beta(3) receptors (beta(3)ARs). Therefore, we developed a mathematical model that also includes adiponectin exocytosis stimulated by extracellular epinephrine or the beta(3)AR agonist CL 316243. Our new model is consistent with all previous patch-clamp data as well as new data (collected from stimulations with a combination of the intracellular mediators and extracellular adrenergic stimuli) and can predict independent validation data. We used this model to perform new in silico experiments where corresponding wet lab experiments would be difficult to perform. We simulated adiponectin exocytosis in single cells in response to the reduction of beta(3)ARs that is observed in adipocytes from animals with obesity-induced diabetes. Finally, we used our model to investigate intracellular dynamics and to predict both cAMP levels and adiponectin release by scaling the model from single-cell to a population of cells-predictions corroborated by experimental data. Our work brings us one step closer to understanding the intricate regulation of adiponectin exocytosis.
  •  
9.
  • Paul, Alexandra, 1988, et al. (författare)
  • Comparing lipid remodeling of brown adipose tissue, white adipose tissue, and liver after one-week high fat diet intervention with quantitative Raman microscopy
  • 2023
  • Ingår i: Journal of Cellular Biochemistry. - : Wiley. - 0730-2312 .- 1097-4644. ; 124:3, s. 382-395
  • Tidskriftsartikel (refereegranskat)abstract
    • Brown adipose tissue (BAT) consists of highly metabolically active adipocytes that catabolize nutrients to produce heat. Playing an active role in triacylglycerol (TAG) clearance, research has shown that dietary fatty acids can modulate the TAG chemistry deposition in BAT after weeks-long dietary intervention, similar to what has been shown in white adipose tissue (WAT). Our objective was to compare the influence of sustained, nonchronic dietary intervention (a 1-week interval) on WAT and interscapular BAT lipid metabolism and deposition in situ. We use quantitative, label-free chemical microscopy to show that 1 week of high fat diet (HFD) intervention results in dramatically larger lipid droplet (LD) growth in BAT (and liver) compared to LD growth in inguinal WAT (IWAT). Moreover, BAT showed lipid remodeling as increased unsaturated TAGs in LDs, resembling the dietary lipid composition, while WAT (and liver) did not show lipid remodeling on this time scale. Concurrently, expression of genes involved in lipid metabolism, particularly desaturases, was reduced in BAT and liver from HFD-fed mice after 1 week. Our data show that BAT lipid chemistry remodels exceptionally fast to dietary lipid intervention compared WAT, which further points towards a role in TAG clearance.
  •  
10.
  • Saliha, Musovic, 1990, et al. (författare)
  • Noradrenaline and ATP regulate adiponectin exocytosis in white adipocytes: Disturbed adrenergic and purinergic signalling in obese and insulin-resistant mice
  • 2022
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207. ; 549
  • Tidskriftsartikel (refereegranskat)abstract
    • White adipocyte adiponectin exocytosis is triggered by cAMP and a concomitant increase of cytosolic Ca2+ potentiates its release. White adipose tissue is richly innervated by sympathetic nerves co-releasing noradrenaline (NA) and ATP, which may act on receptors in the adipocyte plasma membrane to increase cAMP via adrenergic receptors and Ca2+ via purinergic receptors. Here we determine the importance of NA and ATP for the regulation of white adipocyte adiponectin exocytosis, at the cellular and molecular level, and we specifically detail the ATP signalling pathway. We demonstrate that tyrosine hydroxylase (enzyme involved in catecholamine synthesis) is dramatically reduced in inguinal white adipose tissue (IWAT) isolated from mice with diet induced obesity; this is associated with diminished levels of NA in IWAT and with a reduced ratio of high molecular-weight (HMW) to total adiponectin in serum. Adiponectin exocytosis (measured as an increase in plasma membrane capacitance and as secreted product) is triggered by NA or ATP alone in cultured and primary mouse IWAT adipocytes, and enhanced by a combination of the two secretagogues. The ATP-induced adiponectin exocytosis is largely Ca2+-dependent and activated via purinergic P2Y2 receptors (P2Y2Rs) and the Gq11/PLC pathway. Adiponectin release induced by the nucleotide is abrogated in adipocytes isolated from obese and insulin-resistant mice, and this is associated with ~70% reduced abundance of P2Y2Rs. The NA-triggered adiponectin exocytosis is likewise abolished in "obese adipocytes ", concomitant with a 50% lower gene expression of beta 3 adrenergic receptors (beta 3ARs). An increase in intracellular Ca2+ is not required for the NA-stimulated adiponectin secretion. Collectively, our data suggest that sympathetic innervation is a principal regulator of adiponectin exocytosis and that disruptions of this control are associated with the obesity-associated reduction of circulating levels of HMW/total adiponectin.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
Typ av publikation
tidskriftsartikel (10)
bokkapitel (1)
Typ av innehåll
refereegranskat (10)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Olofsson, Charlotta ... (11)
Saliha, Musovic, 199 ... (5)
Shrestha, Man Mohan (4)
Komai, Ali, 1987 (4)
Chanclón, Belén (3)
Wernstedt Asterholm, ... (3)
visa fler...
Banke, Elin (2)
Rorsman, Patrik, 195 ... (2)
Brännmark, Cecilia (2)
Bauzá-Thorbrügge, Ma ... (2)
Wu, Yanling, 1985 (2)
Jönsson, Cecilia (2)
Nyman, Elin (2)
Tolö, Johan (2)
Strålfors, Peter (1)
Borén, Jan, 1963 (1)
Andersson, Linda, 19 ... (1)
Wittung-Stafshede, P ... (1)
Levin, Max, 1969 (1)
Skibicka, Karolina P (1)
Bollano, Entela, 197 ... (1)
Richard, Jennifer E. (1)
Eerola, Kim, 1982 (1)
López-Ferreras, Lore ... (1)
Drevinge, Christina, ... (1)
Mardani, Ismena (1)
Levin, Malin, 1973 (1)
Cinato, Mathieu (1)
Miljanovic, Azra, 19 ... (1)
Lindbom, Malin, 1976 (1)
Laudette, Marion, 19 ... (1)
Henricsson, Marcus, ... (1)
Mishra, Devesh (1)
Cedersund, Gunnar (1)
Shevchouk, Olesya (1)
Asker, Mohammed (1)
Longo, Francesco (1)
Gustafsson, Mika (1)
Peris, Eduard (1)
Wernstedt Asterholm, ... (1)
Paul, Alexandra, 198 ... (1)
Kay, Emma I (1)
Reinbothe, Thomas, 1 ... (1)
Miranda, Caroline (1)
Kugelberg, U. O. (1)
Stralfors, P. (1)
Lövfors, William (1)
Chan, S (1)
Arif, M. (1)
Pacher, P. (1)
visa färre...
Lärosäte
Göteborgs universitet (11)
Linköpings universitet (3)
Örebro universitet (1)
Högskolan i Skövde (1)
Chalmers tekniska högskola (1)
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (10)
Naturvetenskap (3)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy