SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Olofsson Sigvard 1948) srt2:(2015-2019)"

Sökning: WFRF:(Olofsson Sigvard 1948) > (2015-2019)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Skovbjerg, Susann, 1973, et al. (författare)
  • High Cytokine Levels in Tonsillitis Secretions Regardless of Presence of Beta-Hemolytic Streptococci
  • 2015
  • Ingår i: Journal of Interferon and Cytokine Research. - : Mary Ann Liebert Inc. - 1079-9907 .- 1557-7465. ; 35:9, s. 682-689
  • Tidskriftsartikel (refereegranskat)abstract
    • Acute pharyngotonsillitis denotes tonsillar inflammation caused by bacteria or viruses. Here, we investigated if beta-hemolytic streptococci (beta-HS) tonsillitis would differ in inflammatory mediator response from tonsillitis of other causes. Tonsillar secretions were obtained from 36 acute pharyngotonsillitis patients and 16 controls. Bacteria were cultured quantitatively and 18 different viruses were quantified by real-time polymerase chain reaction. Cytokine and prostaglandin E-2 (PGE(2)) levels were determined by enzyme-linked immunosorbent assays. Almost half of the patients' tonsillar secretions yielded high counts of beta-HS, and most samples contained viruses, irrespective of whether beta-HS were present or not. The Epstein-Barr virus (EBV) was the most common virus (patients 62% and controls 13%). Compared to controls, patients' secretions had higher levels of interleukin (IL)-1 beta, IL-6, IL-8, tumor necrosis factor (TNF), and PGE(2), while few samples contained IL-12, IL-10, or interferon-gamma (IFN-gamma). The presence of beta-HS in tonsillitis secretions could not be distinguished by any of the measured mediators, while the presence of EBV DNA tended to be associated with enhanced levels of IL-1 beta and IL-8. The results suggest a common inflammatory response in acute pharyngotonsillitis, regardless of causative agent. The suggested correlation between intense inflammation and the presence of EBV DNA in tonsillitis secretions may be due to reactivation of the virus and/or the EBV-containing B cells.
  •  
2.
  • Bagdonaite, I., et al. (författare)
  • A Strategy for O-Glycoproteomics of Enveloped Viruses-the O-Glycoproteome of Herpes Simplex Virus Type 1
  • 2015
  • Ingår i: Plos Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycosylation of viral envelope proteins is important for infectivity and interaction with host immunity, however, our current knowledge of the functions of glycosylation is largely limited to N-glycosylation because it is difficult to predict and identify site-specific O-glycosylation. Here, we present a novel proteome-wide discovery strategy for O-glycosylation sites on viral envelope proteins using herpes simplex virus type 1 (HSV-1) as a model. We identified 74 O-linked glycosylation sites on 8 out of the 12 HSV-1 envelope proteins. Two of the identified glycosites found in glycoprotein B were previously implicated in virus attachment to immune cells. We show that HSV-1 infection distorts the secretory pathway and that infected cells accumulate glycoproteins with truncated O-glycans, nonetheless retaining the ability to elongate most of the surface glycans. With the use of precise gene editing, we further demonstrate that elongated O-glycans are essential for HSV-1 in human HaCaT keratinocytes, where HSV-1 produced markedly lower viral titers in HaCaT with abrogated O-glycans compared to the isogenic counterpart with normal O-glycans. The roles of O-linked glycosylation for viral entry, formation, secretion, and immune recognition are poorly understood, and the O-glycoproteomics strategy presented here now opens for unbiased discovery on all enveloped viruses.
  •  
3.
  • Bagdonaite, I., et al. (författare)
  • Global Mapping of O-Glycosylation of Varicella Zoster Virus, Human Cytomegalovirus, and Epstein-Barr Virus
  • 2016
  • Ingår i: Journal of Biological Chemistry. - 0021-9258. ; 291:23, s. 12014-12028
  • Tidskriftsartikel (refereegranskat)abstract
    • Herpesviruses are among the most complex and widespread viruses, infection and propagation of which depend on envelope proteins. These proteins serve as mediators of cell entry as well as modulators of the immune response and are attractive vaccine targets. Although envelope proteins are known to carry glycans, little is known about the distribution, nature, and functions of these modifications. This is particularly true for O-glycans; thus we have recently developed a "bottom up" mass spectrometry-based technique for mapping O-glycosylation sites on herpes simplex virus type 1. We found wide distribution of O-glycans on herpes simplex virus type 1 glycoproteins and demonstrated that elongated O-glycans were essential for the propagation of the virus. Here, we applied our proteome-wide discovery platform for mapping O-glycosites on representative and clinically significant members of the herpesvirus family: varicella zoster virus, human cytomegalovirus, and Epstein-Barr virus. We identified a large number of O-glycosites distributed on most envelope proteins in all viruses and further demonstrated conserved patterns of O-glycans on distinct homologous proteins. Because glycosylation is highly dependent on the host cell, we tested varicella zoster virus-infected cell lysates and clinically isolated virus and found evidence of consistent O-glycosites. These results present a comprehensive view of herpesvirus O-glycosylation and point to the widespread occurrence of O-glycans in regions of envelope proteins important for virus entry, formation, and recognition by the host immune system. This knowledge enables dissection of specific functional roles of individual glycosites and, moreover, provides a framework for design of glycoprotein vaccines with representative glycosylation.
  •  
4.
  • Delguste, Martin, et al. (författare)
  • Regulatory Mechanisms of the Mucin-Like Region on Herpes Simplex Virus during Cellular Attachment
  • 2019
  • Ingår i: ACS Chemical Biology. - : American Chemical Society (ACS). - 1554-8937 .- 1554-8929. ; 14:3, s. 534-542
  • Tidskriftsartikel (refereegranskat)abstract
    • Mucin-like regions, characterized by a local high density of O-linked glycosylation, are found on the viral envelope glycoproteins of many viruses. Herpes simplex virus type 1 (HSV-1), for example, exhibits a mucin-like region on its glycoprotein gC, a viral protein involved in initial recruitment of the virus to the cell surface via interaction with sulfated glycosaminoglycans. So far, this mucin-like region has been proposed to play a key role in modulating the interactions with cellular glycosaminoglycans, and in particular to promote release of HSV-1 virions from infected cells. However, the molecular mechanisms and the role as a pathogenicity factor remains unclear. Using single virus particle tracking, we show that the mobility of chondroitin sulfate-bound HSV-1 virions is decreased in absence of the mucin-like region. This decrease in mobility correlates with an increase in HSV-1-chondroitin sulfate binding forces as observed using atomic force microscopy-based force spectroscopy. Our data suggest that the mucin-like region modulates virus-glycosaminoglycan interactions by regulating the affinity, type, and number of glycoproteins involved in the virus-glycosaminoglycan interaction. This study therefore presents new evidence for a role of the mucin-like region in balancing the interaction of HSV-1 with glycosaminoglycans and provides further insights into the molecular mechanisms used by the virus to ensure both successful cell entry and release from the infected cell.
  •  
5.
  • Norberg, Peter, 1974, et al. (författare)
  • Published sequences do not support transfer of oseltamivir resistance mutations from avian to human influenza A virus strains
  • 2015
  • Ingår i: Bmc Infectious Diseases. - : Springer Science and Business Media LLC. - 1471-2334. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Tamiflu (oseltamivir phosphate ester, OE) is a widely used antiviral active against influenza A virus. Its active metabolite, oseltamivir carboxylate (OC), is chemically stable and secreted into wastewater treatment plants. OC contamination of natural habitats of waterfowl might induce OC resistance in influenza viruses persistently infecting waterfowl, and lead to transfer of OC-resistance from avian to human influenza. The aim of this study was to evaluate whether such has occurred. Methods: A genomics approach including phylogenetic analysis and probability calculations for homologous recombination was applied on altogether 19,755 neuraminidase (N1 and N2) genes from virus sampled in humans and birds, with and without resistance mutations. Results: No evidence for transfer of OE resistance mutations from avian to human N genes was obtained, and events suggesting recombination between human and avian influenza virus variants could not be traced in the sequence material studied. Conclusions: The results indicate that resistance in influenza viruses infecting humans is due to the selection pressure posed by the global OE administration in humans rather than transfer from avian influenza A virus strains carrying mutations induced by environmental exposure to OC.
  •  
6.
  • Nordén, Rickard, 1977, et al. (författare)
  • O-linked glycosylation of the mucin domain of the herpes simplex virus type 1 specific glycoprotein gC-1 is temporally regulated in a seed-and-spread manner.
  • 2015
  • Ingår i: The Journal of biological chemistry. - 1083-351X. ; 290:8, s. 5078-5091
  • Tidskriftsartikel (refereegranskat)abstract
    • The herpes simplex virus type 1 (HSV-1) glycoprotein gC-1, participating in viral receptor interactions and immunity interference, harbors a mucin-like domain with multiple clustered O-linked glycans. Using HSV-1 infected diploid human fibroblasts, an authentic target for HSV-1 infection, and a protein immunoaffinity procedure, we enriched fully glycosylated gC-1 and a series of its biosynthetic intermediates. This fraction was subjected to trypsin digestion and a LC-MS/MS glycoproteomics approach. In parallel, we characterized the expression patterns of the 20 isoforms of human GalNAc transferases responsible for initiation of O-linked glycosylation. The gC-1 O-glycosylation was regulated in an orderly manner initiated by synchronous addition of one GalNAc unit each to T87 and T91, and one GalNAc unit to either T99 or T101, forming a core glycopeptide for subsequent additions of in all 11 GalNAc residues to selected Ser and Thr residues of the T76-L107 stretch of the mucin domain. The expression patterns of GalNAc transferases in the infected cells suggested that initial additions of GalNAc were carried out by initiating GalNAc transferases, in particular GalNAc-T2, whereas subsequent GalNAc additions were carried out by follow up transferases, in particular GalNAc-T10. Essentially all of the susceptible Ser or Thr residues had to acquire their GalNAc units before any elongation to longer O-linked glycans of the gC-1-associated GalNAc units was permitted. Since the GalNAc occupancy pattern is of relevance for receptor binding of gC-1, the data provides a model to delineate biosynthetic steps of O-linked glycosylation of the gC-1 mucin domain in HSV-1 infected target cells.
  •  
7.
  • Nordén, Rickard, 1977, et al. (författare)
  • Recombinant Glycoprotein E of Varicella Zoster Virus Contains Glycan-Peptide Motifs That Modulate B Cell Epitopes into Discrete Immunological Signatures
  • 2019
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1422-0067. ; 20:4
  • Tidskriftsartikel (refereegranskat)abstract
    • A recombinant subunit vaccine (Shingrix((R))) was recently licensed for use against herpes zoster. This vaccine is based on glycoprotein E (gE) of varicella zoster virus (VZV), the most abundantly expressed protein of VZV, harboring sites for N- and O-linked glycosylation. The subunit vaccine elicits stronger virus-specific CD4+ T cell response as well as antibody B cell response to gE, compared to the currently used live attenuated vaccine (Zostavax((R))). This situation is at variance with the current notion since a live vaccine, causing an active virus infection, should be far more efficient than a subunit vaccine based on only one single viral glycoprotein. We previously found gE to be heavily glycosylated, not least by numerous clustered O-linked glycans, when it was produced in human fibroblasts. However, in contrast to Zostavax((R)), which is produced in fibroblasts, the recombinant gE of Shingrix((R)) is expressed in Chinese hamster ovary (CHO) cells. Hence, the glycan occupancy and glycan structures of gE may differ considerably between the two vaccine types. Here, we aimed at (i) defining the glycan structures and positions of recombinant gE and (ii) identifying possible features of the recombinant gE O-glycosylation pattern contributing to the vaccine efficacy of Shingrix((R)). Firstly, recombinant gE produced in CHO cells (Shingrix situation) is more scarcely decorated by O-linked glycans than gE from human fibroblasts (Zostavax situation), with respect to glycan site occupancy. Secondly, screening of immunodominant B cell epitopes of gE, using a synthetic peptide library against serum samples from VZV-seropositive individuals, revealed that the O-linked glycan signature promoted binding of IgG antibodies via a decreased number of interfering O-linked glycans, but also via specific O-linked glycans enhancing antibody binding. These findings may, in part, explain the higher protective efficacy of Shingrix((R)), and can also be of relevance for development of subunit vaccines to other enveloped viruses.
  •  
8.
  • Olofsson, Sigvard, 1948, et al. (författare)
  • Viral O-GalNAc peptide epitopes: a novel potential target in viral envelope glycoproteins.
  • 2016
  • Ingår i: Reviews in medical virology. - : Wiley. - 1099-1654 .- 1052-9276. ; 26:1, s. 34-48
  • Tidskriftsartikel (refereegranskat)abstract
    • Viral envelope glycoproteins are major targets for antibodies that bind to and inactivate viral particles. The capacity of a viral vaccine to induce virus-neutralizing antibodies is often used as a marker for vaccine efficacy. Yet the number of known neutralization target epitopes is restricted owing to various viral escape mechanisms. We expand the range of possible viral glycoprotein targets, by presenting a previously unknown type of viral glycoprotein epitope based on a short peptide stretch modified with small O-linked glycans. Besides being immunologically active, these epitopes have a high potential for antigenic variation. Thus, sera from patients infected with EBV develop individual IgG responses addressing the different possible glycopeptide glycoforms of one short peptide backbone that reflect individual variations in the course of virus infection. In contrast, in HSV type 2 meningitis patients, CSF antibodies are focussed to only one single glycoform peptide of a major viral glycoprotein. Thus, dependent on the viral disease, the serological response may be variable or constant with respect to the number of targeted peptide glycoforms. Mapping of these epitopes relies on a novel three-step procedure that identifies any reactive viral O-glycosyl peptide epitope with respect to (i) relevant peptide sequence, (ii) the reactive glycoform out of several possible glycopeptide isomers of that peptide sequence, and (iii) possibly tolerated carbohydrate or peptide structural variations at glycosylation sites. In conclusion, the viral O-glycosyl peptide epitopes may be of relevance for development of subunit vaccines and for improved serodiagnosis of viral diseases.
  •  
9.
  • Risinger, C., et al. (författare)
  • Linear Multiepitope (Glyco)peptides for Type-Specific Serology of Herpes Simplex Virus (HSV) Infections
  • 2017
  • Ingår i: Acs Infectious Diseases. - : American Chemical Society (ACS). - 2373-8227. ; 3:5, s. 360-367
  • Tidskriftsartikel (refereegranskat)abstract
    • Detection of type-specific antibodies is an important and essential part of accurate diagnosis, even in silent carriers of herpes simplex virus (HSV)-1 (oral) and HSV-2 (genital) infections. Serologic assays that identify HSV-1 and HSV-2 type-specific antibodies have been commercially available for more than a decade but often face problems related to cross-reactivity and similar issues. Attempts to identify type-specific peptide epitopes for use in serology for both HSV-1 and HSV-2 have been limited. We recently demonstrated epitope mapping of envelope glycoprotein G2 and identified a type-specific glycopeptide epitope that broadly recognized HSV-2 infected individuals. In the present work we have performed a comprehensive glycopeptide synthesis and rnicroarray epitope mapping of 14 envelope proteins from HSV-1 and HSV-2, namely, gB, gC, gD, gE, gG, gH, and gI, using sera from HSV-1-and HSV-2-infected individuals and control sera. Several unique type-specific peptide epitopes with high sensitivity were identified and synthesized as one large linear multiepitope sequence using microwave-assisted solid-phase (glyco)peptide synthesis. Microarray validation with clinically defined HSV and Varicella Zoster (VZV) sera confirmed excellent cumulative specificities and sensitivities.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy