SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Oostrum L. C.) srt2:(2022)"

Sökning: WFRF:(Oostrum L. C.) > (2022)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • van Cappellen, W., et al. (författare)
  • Apertif: Phased array feeds for the Westerbork Synthesis Radio Telescope: System overview and performance characteristics
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the APERture Tile In Focus (Apertif) system, a phased array feed (PAF) upgrade of the Westerbork Synthesis Radio Telescope that transforms this telescope into a high-sensitivity, wide-field-of-view L-band imaging and transient survey instrument. Using novel PAF technology, up to 40 partially overlapping beams are formed on the sky simultaneously, significantly increasing the survey speed of the telescope. With this upgraded instrument, an imaging survey covering an area of 2300 deg2 is being performed that will deliver both continuum and spectral line datasets, of which the first data have been publicly released. In addition, a time domain transient and pulsar survey covering 15 000 deg2 is in progress. An overview of the Apertif science drivers, hardware, and software of the upgraded telescope is presented, along with its key performance characteristics.
  •  
2.
  • Bilous, A. V., et al. (författare)
  • Dual-frequency single-pulse study of PSR B0950+08
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Tidskriftsartikel (refereegranskat)abstract
    • PSR B0950+08 is a bright nonrecycled pulsar whose single-pulse fluence variability is reportedly large. Based on observations at two widely separated frequencies, 55 MHz (NenuFAR) and 1.4 GHz (Westerbork Synthesis Radio Telescope), we review the properties of these single pulses. We conclude that they are more similar to ordinary pulses of radio emission than to a special kind of short and bright giant pulses, observed from only a handful of pulsars. We argue that a temporal variation of the properties of the interstellar medium along the line of sight to this nearby pulsar, namely the fluctuating size of the decorrelation bandwidth of diffractive scintillation makes an important contribution to the observed single-pulse fluence variability. We further present interesting structures in the low-frequency single-pulse spectra that resemble the "sad trombones"seen in fast radio bursts (FRBs); although for PSR B0950+08 the upward frequency drift is also routinely present. We explain these spectral features with radius-to-frequency mapping, similar to the model developed by Wang et al. (2019, ApJ, 876, L15) for FRBs. Finally, we speculate that μs-scale fluence variability of the general pulsar population remains poorly known, and that its further study may bring important clues about the nature of FRBs.
  •  
3.
  • Adams, E. A. K., et al. (författare)
  • First release of Apertif imaging survey data
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 667
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Apertif is a phased-array feed system for the Westerbork Synthesis Radio Telescope, providing forty instantaneous beams over 300 MHz of bandwidth. A dedicated survey program utilizing this upgrade started on 1 July 2019, with the last observations taken on 28 February 2022. The imaging survey component provides radio continuum, polarization, and spectral line data. Aims. Public release of data is critical for maximizing the legacy of a survey. Toward that end, we describe the release of data products from the first year of survey operations, through 30 June 2020. In particular, we focus on defining quality control metrics for the processed data products. Methods. The Apertif imaging pipeline, Apercal, automatically produces non-primary beam corrected continuum images, polarization images and cubes, and uncleaned spectral line and dirty beam cubes for each beam of an Apertif imaging observation. For this release, processed data products are considered on a beam-by-beam basis within an observation. We validate the continuum images by using metrics that identify deviations from Gaussian noise in the residual images. If the continuum image passes validation, we release all processed data products for a given beam. We apply further validation to the polarization and line data products and provide flags indicating the quality of those data products. Results. We release all raw observational data from the first year of survey observations, for a total of 221 observations of 160 independent target fields, covering approximately one thousand square degrees of sky. Images and cubes are released on a per beam basis, and 3374 beams (of 7640 considered) are released. The median noise in the continuum images is 41.4 uJy beam(-1), with a slightly lower median noise of 36.9 uJy beam(-1) in the Stokes V polarization image. The median angular resolution is 11.6 ''/sin delta. The median noise for all line cubes, with a spectral resolution of 36.6 kHz, is 1.6 mJy beam(-1), corresponding to a 3-sigma H i column density sensitivity of 1.8 x 10(20) atoms cm(-2) over 20 km s(-1) (for a median angular resolution of 24 '' x 15 ''). Line cubes at lower frequency have slightly higher noise values, consistent with the global RFI environment and overall Apertif system performance. We also provide primary beam images for each individual Apertif compound beam. The data are made accessible using a Virtual Observatory interface and can be queried using a variety of standard tools.
  •  
4.
  • Kukreti, P., et al. (författare)
  • Seeing the forest and the trees: A radio investigation of the ULIRG Mrk 273
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 664
  • Tidskriftsartikel (refereegranskat)abstract
    • Galaxy mergers have been observed to trigger nuclear activity by feeding gas to the central supermassive black hole. One such class of objects are Ultra Luminous InfraRed Galaxies (ULIRGs), which are mostly late stage major mergers of gas-rich galaxies. Recently, large-scale (100 kpc) radio continuum emission has been detected in a select number of ULIRGs, all of which also harbour powerful Active Galactic Nuclei (AGN). This hints at the presence of large-scale radio emission being evidence for nuclear activity. Exploring the origin of this radio emission and its link to nuclear activity requires high sensitivity multi-frequency data. We present such an analysis of the ULIRG Mrk 273. Using the International LOFAR telescope (ILT), we detected spectacular large-scale arcs in this system. This detection includes, for the first time, a giant 190 kpc arc in the north. We propose these arcs are fuelled by a low power radio AGN triggered by the merger. We also identified a bright 45 kpc radio ridge, which is likely related to the ionised gas nebula in that region. We combined this with high sensitivity data from APERture Tile In Focus (Apertif) and archival data from the Very Large Array (VLA) to explore the spectral properties. The ILT simultaneously allowed us to probe the nucleus at a resolution of 0.3, where we detected three components, and, for the first time, diffuse emission around these components. Combining this with archival high frequency VLA images of the nucleus allowed us to detect absorption in one component, and a steep spectrum radio AGN in another. We then extrapolate from this case study to the importance of investigating the presence of radio emission in more ULIRGs and what it can tell us about the link between mergers and the presence of radio activity.
  •  
5.
  • Adebahr, B., et al. (författare)
  • Apercal - The Apertif calibration pipeline
  • 2022
  • Ingår i: Astronomy and Computing. - : Elsevier BV. - 2213-1337. ; 38
  • Tidskriftsartikel (refereegranskat)abstract
    • Apertif (APERture Tile In Focus) is one of the Square Kilometre Array (SKA) pathfinder facilities. The Apertif project is an upgrade to the 50-year-old Westerbork Synthesis Radio Telescope (WSRT) using phased-array feed technology. The new receivers create 40 individual beams on the sky, achieving an instantaneous sky coverage of 6.5 square degrees. The primary goal of the Apertif Imaging Survey is to perform a wide survey of 3500 square degrees (AWES) and a medium deep survey of 350 square degrees (AMES) of neutral atomic hydrogen (up to a redshift of 0.26), radio continuum emission and polarisation. Each survey pointing yields 4.6 TB of correlated data. The goal of Apercal is to process this data and fully automatically generate science ready data products for the astronomical community while keeping up with the survey observations. We make use of common astronomical software packages in combination with Python based routines and parallelisation. We use an object oriented module-based approach to ensure easy adaptation of the pipeline. A Jupyter notebook based framework allows user interaction and execution of individual modules as well as a full automatic processing of a complete survey observation. If nothing interrupts processing, we are able to reduce a single pointing survey observation on our five node cluster with 24 physical cores and 256 GB of memory each within 24 h keeping up with the speed of the surveys. The quality of the generated images is sufficient for scientific usage for 44% of the recorded data products with single images reaching dynamic ranges of several thousands. Future improvements will increase this percentage to over 80%. Our design allowed development of the pipeline in parallel to the commissioning of the Apertif system.
  •  
6.
  • Adebahr, B., et al. (författare)
  • The Apertif science verification campaign: Characteristics of polarised radio sources
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 663
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The characteristics of the polarised radio sky are a key ingredient in constraining evolutionary models of magnetic fields in the Universe and their role in feedback processes. The origin of the polarised emission and the characteristics of the intergalactic medium on the line of sight can be investigated using large samples of polarised sources. Ancillary infrared (IR) and optical data can be used to study the nature of the emitting objects. Aims. We analyse five early science datasets from the APERture Tile in Focus (Apertif) phased array feed system to verify the polarisation capabilities of Apertif in view of future larger data releases. We aim to characterise the source population of the polarised sky in the L-Band using polarised source information in combination with IR and optical data. Methods. We use automatic routines to generate full field-of-view Q- and U-cubes and perform rotation measure (RM)-Synthesis, source finding, and cross-matching with published radio, optical, and IR data to generate polarised source catalogues. All sources were inspected individually by eye for verification of their IR and optical counterparts. Spectral energy distribution (SED)-fitting routines were used to determine photometric redshifts, star-formation rates, and galaxy masses. IR colour information was used to classify sources as active galactic nuclei (AGN) or star-forming-dominated and early- or late-type. Results. We surveyed an area of 56 deg2 and detected 1357 polarised source components in 1170 sources. The fraction of polarised sources is 10.57% with a median fractional polarisation of 4.70 ± 0.14%. We confirmed the reliability of the Apertif measurements by comparing them with polarised cross-identified NVSS sources. Average RMs of the individual fields lie within the error of the best Milky Way foreground measurements. All of our polarised sources were found to be dominated by AGN activity in the radio regime with most of them being radio-loud (79%) and of the Fanaroff-Riley (FR)II class (87%). The host galaxies of our polarised source sample are dominated by intermediate disc and star-forming disc galaxies. The contribution of star formation to the radio emission is on the order of a few percent for 10% of the polarised sources while for 90% it is completely dominated by the AGN. We do not see any change in fractional polarisation for different star-formation rates of the AGN host galaxies. Conclusions. The Apertif system is suitable for large-area high-sensitivity polarised sky surveys. The data products of the polarisation analysis pipeline can be used to investigate the Milky Way magnetic field on projected scales of several arcminutes as well as the origin of the polarised emission in AGN and the properties of their host galaxies.
  •  
7.
  • Denes, H., et al. (författare)
  • Characterising the Apertif primary beam response
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 667
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Phased array feeds (PAFs) are multi-element receivers in the focal plane of a telescope that make it possible to simultaneously form multiple beams on the sky by combining the complex gains of the individual antenna elements. Recently, the Westerbork Synthesis Radio Telescope (WSRT) was upgraded with PAF receivers to carry out several observing programs, including two imaging surveys and a time-domain survey. The Apertif imaging surveys use a configuration of 40 partially overlapping compound beams (CBs) simultaneously formed on the sky and arranged in an approximately rectangular shape. Aims. This work is aimed at characterising the response of the 40 Apertif CBs to create frequency-resolved I, XX, and YY polarization empirical beam shapes. The measured CB maps can be used for the image deconvolution, primary beam correction, and mosaicking processes of Apertif imaging data. Methods. We used drift scan measurements to measure the response of each of the 40 Apertif CBs. We derived beam maps for all individual beams in I, XX, and YY polarisation in 10 or 18 frequency bins over the same bandwidth as the Apertif imaging surveys. We sampled the main lobe of the beams and the side lobes up to a radius of 0.6 degrees from the beam centres. In addition, we derived beam maps for each individual WSRT dish. Results. We present the frequency and time dependence of the beam shapes and sizes. We compared the compound beam shapes derived with the drift scan method to beam shapes derived with an independent method using a Gaussian Process Regression comparison between the Apertif continuum images and the NRAO VLA Sky Survey (NVSS) catalogue. We find a good agreement between the beam shapes derived with the two independent methods.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy