SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Orduna Pablo) "

Sökning: WFRF:(Orduna Pablo)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gutierrez, Jesus, et al. (författare)
  • Subjective evaluation of visual quality and simulator sickness of short 360 videos : ITU-T Rec. P.919
  • 2022
  • Ingår i: IEEE transactions on multimedia. - 1520-9210 .- 1941-0077. ; 24, s. 3087-3100
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently an impressive development in immersive technologies, such as Augmented Reality (AR), Virtual Reality (VR) and 360 video, has been witnessed. However, methods for quality assessment have not been keeping up. This paper studies quality assessment of 360 video from the cross-lab tests (involving ten laboratories and more than 300 participants) carried out by the Immersive Media Group (IMG) of the Video Quality Experts Group (VQEG). These tests were addressed to assess and validate subjective evaluation methodologies for 360 video. Audiovisual quality, simulator sickness symptoms, and exploration behavior were evaluated with short (from 10 seconds to 30 seconds) 360 sequences. The following factors' influences were also analyzed: assessment methodology, sequence duration, Head-Mounted Display (HMD) device, uniform and non-uniform coding degradations, and simulator sickness assessment methods. The obtained results have demonstrated the validity of Absolute Category Rating (ACR) and Degradation Category Rating (DCR) for subjective tests with 360 videos, the possibility of using 10-second videos (with or without audio) when addressing quality evaluation of coding artifacts, as well as any commercial HMD (satisfying minimum requirements). Also, more efficient methods than the long Simulator Sickness Questionnaire (SSQ) have been proposed to evaluate related symptoms with 360 videos. These results have been instrumental for the development of the ITU-T Recommendation P.919. Finally, the annotated dataset from the tests is made publicly available for the research community.
  •  
2.
  • Gutierrez, Jesus, et al. (författare)
  • Subjective evaluation of visual quality and simulator sickness of short 360 videos : ITU-T Rec. P.919
  • 2022
  • Ingår i: IEEE transactions on multimedia. - : Institute of Electrical and Electronics Engineers (IEEE). - 1520-9210 .- 1941-0077. ; 24, s. 3087-3100
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently an impressive development in immersive technologies, such as Augmented Reality (AR), Virtual Reality (VR) and 360 video, has been witnessed. However, methods for quality assessment have not been keeping up. This paper studies quality assessment of 360 video from the cross-lab tests (involving ten laboratories and more than 300 participants) carried out by the Immersive Media Group (IMG) of the Video Quality Experts Group (VQEG). These tests were addressed to assess and validate subjective evaluation methodologies for 360 video. Audiovisual quality, simulator sickness symptoms, and exploration behavior were evaluated with short (from 10 seconds to 30 seconds) 360 sequences. The following factors' influences were also analyzed: assessment methodology, sequence duration, Head-Mounted Display (HMD) device, uniform and non-uniform coding degradations, and simulator sickness assessment methods. The obtained results have demonstrated the validity of Absolute Category Rating (ACR) and Degradation Category Rating (DCR) for subjective tests with 360 videos, the possibility of using 10-second videos (with or without audio) when addressing quality evaluation of coding artifacts, as well as any commercial HMD (satisfying minimum requirements). Also, more efficient methods than the long Simulator Sickness Questionnaire (SSQ) have been proposed to evaluate related symptoms with 360 videos. These results have been instrumental for the development of the ITU-T Recommendation P.919. Finally, the annotated dataset from the tests is made publicly available for the research communit
  •  
3.
  • Garcia-Zubia, Javier, et al. (författare)
  • Empirical Analysis of the Use of the VISIR Remote Lab in Teaching Analog Electronics
  • 2017
  • Ingår i: IEEE Transactions on Education. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 0018-9359 .- 1557-9638. ; 60:2, s. 149-156
  • Tidskriftsartikel (refereegranskat)abstract
    • Remote laboratories give students the opportunity of experimenting in STEM by using the Internet to control and measure an experimental setting. Remote laboratories are increasingly used in the classroom to complement, or substitute for, hands-on laboratories, so it is important to know its learning value. While many authors approach this question through qualitative analyses, this paper reports a replicated quantitative study that evaluates the teaching performance of one of these resources, the virtual instrument systems in reality (VISIR) remote laboratory. VISIR, described here, is the most popular remote laboratory for basic analog electronics. This paper hypothesizes that use of a remote laboratory has a positive effect on students' learning process. This report analyzes the effect of the use of VISIR in five different groups of students from two different academic years (2013-2014 and 2014-2015), with three teachers and at two educational levels. The empirical experience focuses on Ohm's Law. The results obtained are reported using a pretest and post-test design. The tests were carefully designed and analyzed, and their reliability and validity were assessed. The analysis of knowledge test question results shows that the post-test scores are higher that the pretest. The difference is significant according to Wilcoxon test (p < 0.001), and produces a Cohen effect size of 1.0. The VISIR remote laboratory's positive effect on students' learning processes indicates that remote laboratories can produce a positive effect in students' learning if an appropriate activity is used.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy