SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ottosson Niklas) srt2:(2015-2019)"

Sökning: WFRF:(Ottosson Niklas) > (2015-2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhang, Yu, et al. (författare)
  • Photochemical conversion of tin-oxo cage compounds studied using hard x-ray photoelectron spectroscopy
  • 2017
  • Ingår i: Journal of Micro/Nanolithography. - 1932-5150 .- 1932-5134. ; 16:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular inorganic materials are currently considered photoresists for extreme ultraviolet lithography (EUVL). Their high EUV absorption cross section and small building block size potentially allow high sensitivity and resolution as well as low line-edge roughness. The photochemical reaction mechanisms that allow these kinds of materials to function as photoresists, however, are still poorly understood. We discuss photochemical reactions upon deep UV (DUV) irradiation of a model negative-tone EUV photoresist material, namely the well-defined molecular tin-oxo cage compound [(SnBu)12O14(OH)6](OH)2, which is spin-coated to thin layers of 20 nm. The core electronic structures (Sn 3d, O 1s, and C 1s) of unexposed and DUV exposed films were then investigated using synchrotron radiation-based hard x-ray photoelectron spectroscopy. Different chemical oxidation states and concentrations of atoms and atom types in the unexposed and exposed films were found. We observed that the exposure in a nitrogen atmosphere prevented the oxidation but still led to carbon loss, albeit with a smaller conversion. Finally, a mechanistic hypothesis for the basic DUV photoreactions in molecular tin-oxo cages is proposed.
  •  
2.
  • Zhang, Yu, et al. (författare)
  • Photochemical conversion of tin-oxo cage compounds studied using hard x-ray photoelectron spectroscopy
  • 2017
  • Ingår i: ADVANCES IN PATTERNING MATERIALS AND PROCESSES XXXIV. - : SPIE. - 9781510607446 - 9781510607439
  • Konferensbidrag (refereegranskat)abstract
    • Several metal-containing molecular inorganic materials are currently considered as photoresists for extreme ultraviolet lithography (EUVL). This is primarily due to their high EUV absorption cross section and small building block size, properties which potentially allow both high sensitivity and resolution as well as low line-edge roughness. The photochemical reaction mechanisms that allow these kinds of materials to function as photoresists, however, are still poorly understood. As a step in this direction, we here discuss photochemical reactions upon deep UV (DUV) irradiation of a model negative-tone EUV photoresist material, namely the well-defined molecular tin-oxo cage compound [(SnR)12O14(OH)6]X2 (R = organic group; X = anion) which is spin coated to thin layers of 20 nm. The core electronic structure (Sn 3d, O 1s and C 1s) of fresh and DUV exposed films were then investigated using synchrotron radiationbased hard X-ray photoelectron spectroscopy (HAXPES). This method provides information about the structure and chemical state of the respective atoms in the material. We performed a comparative HAXPES study of the composition of the tin-oxo cage compound [(SnR)12O14(OH)6](OH)2, either fresh directly after spin-coated vs. DUV-exposed materials under either ambient condition or under a dry N2 atmosphere. Different chemical oxidation states and concentrations of atoms and atom types in the fresh and exposed films were found. We further found that the chemistry resulting from exposure in air and N2 is strikingly different, clearly illustrating the influence of film-gas interactions on the (photo)chemical processes that eventually determine the photoresist. Finally, a mechanistic hypothesis for the basic DUV photoreactions in molecular tin-oxo cages is proposed.
  •  
3.
  • Öhrwall, Gunnar, et al. (författare)
  • Acid-Base Speciation of Carboxylate Ions in the Surface Region of Aqueous Solutions in the Presence of Ammonium and Aminium Ions
  • 2015
  • Ingår i: The Journal of Physical Chemistry Part B. - : American Chemical Society (ACS). - 1520-5207 .- 1520-6106. ; 119:10, s. 4033-4040
  • Tidskriftsartikel (refereegranskat)abstract
    • The acid base speciation of surface-active carboxylate ions in the surface region of aqueous solutions was studied with synchrotron-radiation-based photoelectron spectroscopy. The protonated form was found at an extraordinarily large fraction compared to that expected from the bulk pH. When adding salts containing the weak acid NH4+ to the solution, the fraction of the acidic form at the surface increases, and to a Much greatet extent than expected from the bulk pH of the solution. We show that ammonium ions also are overrepresented in the surface region, and propose that the interaction between the surface-active anionic carboxylates and cationic ammonium ions creates a carboxylateammonium bilayer close to the surface, which increases the probability of the protonation of the carboxylae ions. By comparing the situation when a salt of the less volatile amine diethanolatnine is used, We also show that the observed evaporation of ammonia that occurs after such an event only affects the equilibrium marginally.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy