SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Paavola M) srt2:(2020-2022)"

Sökning: WFRF:(Paavola M) > (2020-2022)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bakker, M. K., et al. (författare)
  • Genome-wide association study of intracranial aneurysms identifies 17 risk loci and genetic overlap with clinical risk factors
  • 2020
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 52:12, s. 1303-1313
  • Tidskriftsartikel (refereegranskat)abstract
    • Rupture of an intracranial aneurysm leads to subarachnoid hemorrhage, a severe type of stroke. To discover new risk loci and the genetic architecture of intracranial aneurysms, we performed a cross-ancestry, genome-wide association study in 10,754 cases and 306,882 controls of European and East Asian ancestry. We discovered 17 risk loci, 11 of which are new. We reveal a polygenic architecture and explain over half of the disease heritability. We show a high genetic correlation between ruptured and unruptured intracranial aneurysms. We also find a suggestive role for endothelial cells by using gene mapping and heritability enrichment. Drug-target enrichment shows pleiotropy between intracranial aneurysms and antiepileptic and sex hormone drugs, providing insights into intracranial aneurysm pathophysiology. Finally, genetic risks for smoking and high blood pressure, the two main clinical risk factors, play important roles in intracranial aneurysm risk, and drive most of the genetic correlation between intracranial aneurysms and other cerebrovascular traits. Cross-ancestry genome-wide association analyses in individuals of European and East Asian ancestry identify 11 new risk loci for intracranial aneurysms and highlight a polygenic architecture explaining a substantial fraction of disease heritability.
  •  
2.
  • Costello, David M., et al. (författare)
  • Global patterns and controls of nutrient immobilization on decomposing cellulose in riverine ecosystems
  • 2022
  • Ingår i: Global Biogeochemical Cycles. - : John Wiley & Sons. - 0886-6236 .- 1944-9224. ; 36:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbes play a critical role in plant litter decomposition and influence the fate of carbon in rivers and riparian zones. When decomposing low-nutrient plant litter, microbes acquire nitrogen (N) and phosphorus (P) from the environment (i.e., nutrient immobilization), and this process is potentially sensitive to nutrient loading and changing climate. Nonetheless, environmental controls on immobilization are poorly understood because rates are also influenced by plant litter chemistry, which is coupled to the same environmental factors. Here we used a standardized, low-nutrient organic matter substrate (cotton strips) to quantify nutrient immobilization at 100 paired stream and riparian sites representing 11 biomes worldwide. Immobilization rates varied by three orders of magnitude, were greater in rivers than riparian zones, and were strongly correlated to decomposition rates. In rivers, P immobilization rates were controlled by surface water phosphate concentrations, but N immobilization rates were not related to inorganic N. The N:P of immobilized nutrients was tightly constrained to a molar ratio of 10:1 despite wide variation in surface water N:P. Immobilization rates were temperature-dependent in riparian zones but not related to temperature in rivers. However, in rivers nutrient supply ultimately controlled whether microbes could achieve the maximum expected decomposition rate at a given temperature. Collectively, we demonstrated that exogenous nutrient supply and immobilization are critical control points for decomposition of organic matter.
  •  
3.
  • Rixen, C., et al. (författare)
  • Winters are changing: snow effects on Arctic and alpine tundra ecosystems
  • 2022
  • Ingår i: Arctic Science. - : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 572-608
  • Tidskriftsartikel (refereegranskat)abstract
    • Snow is an important driver of ecosystem processes in cold biomes. Snow accumulation determines ground temperature, light conditions, and moisture availability during winter. It also affects the growing season's start and end, and plant access to moisture and nutrients. Here, we review the current knowledge of the snow cover's role for vegetation, plant-animal interactions, permafrost conditions, microbial processes, and biogeochemical cycling. We also compare studies of natural snow gradients with snow experimental manipulation studies to assess time scale difference of these approaches. The number of tundra snow studies has increased considerably in recent years, yet we still lack a comprehensive overview of how altered snow conditions will affect these ecosystems. Specifically, we found a mismatch in the timing of snowmelt when comparing studies of natural snow gradients with snow manipulations. We found that snowmelt timing achieved by snow addition and snow removal manipulations (average 7.9 days advance and 5.5 days delay, respectively) were substantially lower than the temporal variation over natural spatial gradients within a given year (mean range 56 days) or among years (mean range 32 days). Differences between snow study approaches need to be accounted for when projecting snow dynamics and their impact on ecosystems in future climates.
  •  
4.
  • Kanto, K, et al. (författare)
  • Minimal important difference and patient acceptable symptom state for pain, Constant-Murley score and Simple Shoulder Test in patients with subacromial pain syndrome
  • 2021
  • Ingår i: BMC medical research methodology. - : Springer Science and Business Media LLC. - 1471-2288. ; 21:1, s. 45-
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundThe results of clinical trials should be assessed for both statistical significance and importance of observed effects to patients. Minimal important difference (MID) is a threshold denoting a difference that is important to patients. Patient acceptable symptom state (PASS) is a threshold above which patients feel well.ObjectiveTo determine MID and PASS for common outcome instruments in patients with subacromial pain syndrome (SAPS).MethodsWe used data from the FIMPACT trial, a randomised controlled trial of treatment for SAPS that included 193 patients. The outcomes were shoulder pain at rest and on arm activity, both measured with the 0–100 mm visual analogue scale (VAS), the Constant-Murley score (CS), and the Simple Shoulder Test (SST). The transition question was a five-point global rating of change. We used three anchor-based methods to determine the MID for improvement: the receiver operating characteristic (ROC) curve, the mean difference of change and the mean change methods. For the PASS, we used the ROC and 75th percentile methods and calculated estimates using two different anchor question thresholds.ResultsDifferent MID methods yielded different estimates. The ROC method yielded the smallest estimates for MID: 20 mm for shoulder pain on arm activity, 10 points for CS and 1.5 points for SST, with good to excellent discrimination (areas under curve (AUCs) from 0.86 to 0.94). We could not establish a reliable MID for pain at rest. The PASS estimates were consistent between methods. The ROC method PASS thresholds using a conservative anchor question threshold were 2 mm for pain at rest, 9 mm for pain on activity, 80 points for CS and 11 points for SST, with AUCs from 0.74 to 0.83.ConclusionWe recommend the smallest estimate from different methods as the MID, because it is very unlikely that changes smaller than the smallest MID estimate are important to patients: 20 mm for pain VAS on arm activity, 10 points for CS and 1.5 points for SST. We recommend PASS estimates of 9 mm for pain on arm activity, 80 points for CS, and 11 points for SST.Trial registrationClinicalTrials.govNCT00428870 (first registered January 29, 2007).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy