SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Palmtag Juri) srt2:(2020-2023)"

Sökning: WFRF:(Palmtag Juri) > (2020-2023)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beer, Christian, et al. (författare)
  • Vertical pattern of organic matter decomposability in cryoturbated permafrost-affected soils
  • 2022
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 17:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Permafrost thaw will release additional carbon dioxide into the atmosphere resulting in a positive feedback to climate change. However, the mineralization dynamics of organic matter (OM) stored in permafrost-affected soils remain unclear. We used physical soil fractionation, radiocarbon measurements, incubation experiments, and a dynamic decomposition model to identify distinct vertical pattern in OM decomposability. The observed differences reflect the type of OM input to the subsoil, either by cryoturbation or otherwise, e.g. by advective water-borne transport of dissolved OM. In non-cryoturbated subsoil horizons, most OM is stabilized at mineral surfaces or by occlusion in aggregates. In contrast, pockets of OM-rich cryoturbated soil contain sufficient free particulate OM for microbial decomposition. After thaw, OM turnover is as fast as in the upper active layer. Since cryoturbated soils store ca. 450 Pg carbon, identifying differences in decomposability according to such translocation processes has large implications for the future global carbon cycle and climate, and directs further process model development.
  •  
2.
  • Mishra, Umakant, et al. (författare)
  • Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Large stocks of soil organic carbon (SOC) have accumulated in the Northern Hemisphere permafrost region, but their current amounts and future fate remain uncertain. By analyzing dataset combining >2700 soil profiles with environmental variables in a geospatial framework, we generated spatially explicit estimates of permafrost-region SOC stocks, quantified spatial heterogeneity, and identified key environmental predictors. We estimated that Pg C are stored in the top 3 m of permafrost region soils. The greatest uncertainties occurred in circumpolar toe-slope positions and in flat areas of the Tibetan region. We found that soil wetness index and elevation are the dominant topographic controllers and surface air temperature (circumpolar region) and precipitation (Tibetan region) are significant climatic controllers of SOC stocks. Our results provide first high-resolution geospatial assessment of permafrost region SOC stocks and their relationships with environmental factors, which are crucial for modeling the response of permafrost affected soils to changing climate.
  •  
3.
  • Ogneva, Olga, et al. (författare)
  • Particulate organic matter in the Lena River and its delta : from thepermafrost catchment to the Arctic Ocean
  • 2023
  • Ingår i: Biogeosciences. - 1726-4170 .- 1726-4189. ; 20:7, s. 1423-1441
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapid Arctic warming accelerates permafrost thaw, causing an additional release of terrestrial organic matter (OM) into rivers and, ultimately, after transport via deltas and estuaries, to the Arctic Ocean nearshore. The majority of our understanding of nearshore OM dynamics and fate has been developed from freshwater rivers despite the likely impact of highly dynamic estuarine and deltaic environments on the transformation, storage, and age of OM delivered to coastal waters. Here, we studied particulate organic carbon (POC) dynamics in the Lena River delta and compared them with POC dynamics in the Lena River main stem along a similar to 1600 km long transect from Yakutsk, downstream to the delta. We measured POC, total suspended matter (TSM), and carbon isotopes (delta C-13 and Delta C-14) in POC to compare riverine and deltaic OM composition and changes in OM source and fate during transport offshore. We found that TSM and POC concentrations decreased by 70% during transit from the main stem to the delta and Arctic Ocean. We found deltaic POC to be strongly depleted in C-13 relative to fluvial POC. Dual-carbon (Delta C-14 and delta C-13) isotope mixing model analyses indicated a significant phytoplankton contribution to deltaic POC (similar to 68 +/- 6 %) and suggested an additional input of permafrost-derived OM into deltaic waters (similar to 18 +/- 4% of deltaic POC originates from Pleistocene deposits vs. similar to 5 +/- 4% in the river main stem). Despite the lower concentration of POC in the delta than in the main stem (0.41 +/- 0.10 vs. 0.79 +/- 0.30 mg L-1, respectively), the amount of POC derived from Yedoma deposits in deltaic waters was almost twice as large as the amount of POC of Yedoma origin in the main stem (0.07 +/- 0.02 and 0.04 +/- 0.02 mg L-1, respectively). We assert that estuarine and deltaic processes require consideration in order to correctly understand OM dynamics throughout Arctic nearshore coastal zones and how these processes may evolve under future climate-driven change.
  •  
4.
  • Palmtag, Juri, 1980-, et al. (författare)
  • A high spatial resolution soil carbon and nitrogen dataset for the northern permafrost region based on circumpolar land cover upscaling
  • 2022
  • Ingår i: Earth System Science Data. - : Copernicus Publications. - 1866-3508 .- 1866-3516. ; 14:9, s. 4095-4110
  • Tidskriftsartikel (refereegranskat)abstract
    • Soils in the northern high latitudes are a key component in the global carbon cycle; the northern permafrost region covers 22% of the Northern Hemisphere land surface area and holds almost twice as much carbon as the atmosphere. Permafrost soil organic matter stocks represent an enormous long-term carbon sink which is in risk of switching to a net source in the future. Detailed knowledge about the quantity and the mechanisms controlling organic carbon storage is of utmost importance for our understanding of potential impacts of and feedbacks on climate change. Here we present a geospatial dataset of physical and chemical soil properties calculated from 651 soil pedons encompassing more than 6500 samples from 16 different study areas across the northern permafrost region. The aim of our dataset is to provide a basis to describe spatial patterns in soil properties, including quantifying carbon and nitrogen stocks. There is a particular need for spatially distributed datasets of soil properties, including vertical and horizontal distribution patterns, for modeling at local, regional, or global scales. This paper presents this dataset, describes in detail soil sampling; laboratory analysis, and derived soil geochemical parameters; calculations; and data clustering. Moreover, we use this dataset to estimate soil organic carbon and total nitrogen storage estimates in soils in the northern circumpolar permafrost region (17.9 x 106 km2) using the European Space Agency's (ESA's) Climate Change Initiative (CCI) global land cover dataset at 300m pixel resolution. We estimate organic carbon and total nitrogen stocks on a circumpolar scale (excluding Tibet) for the 0-100 and 0-300 cm soil depth to be 380 and 813 Pg for carbon, and 21 and 55 Pg for nitrogen, respectively. Our organic carbon estimates agree with previous studies, with most recent estimates of 1000 Pg (170 to C186 Pg) to 300 cm depth. Two separate datasets are freely available on the Bolin Centre Database repository (https://doi.org/10.17043/palmtag-2022-pedon-1, Palmtag et al., 2022a; and https://doi.org/10.17043/palmtag-2022-spatial-1, Palmtag et al., 2002b).
  •  
5.
  • Sanders, Tina, et al. (författare)
  • Seasonal nitrogen fluxes of the Lena River Delta
  • 2022
  • Ingår i: Ambio. - : Springer Science and Business Media LLC. - 0044-7447 .- 1654-7209. ; 51:2, s. 423-438
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic is nutrient limited, particularly by nitrogen, and is impacted by anthropogenic global warming which occurs approximately twice as fast compared to the global average. Arctic warming intensifies thawing of permafrost-affected soils releasing their large organic nitrogen reservoir. This organic nitrogen reaches hydrological systems, is remineralized to reactive inorganic nitrogen, and is transported to the Arctic Ocean via large rivers. We estimate the load of nitrogen supplied from terrestrial sources into the Arctic Ocean by sampling in the Lena River and its Delta. We took water samples along one of the major deltaic channels in winter and summer in 2019 and sampling station in the central delta over a one-year cycle. Additionally, we investigate the potential release of reactive nitrogen, including nitrous oxide from soils in the Delta. We found that the Lena transported nitrogen as dissolved organic nitrogen to the coastal Arctic Ocean and that eroded soils are sources of reactive inorganic nitrogen such as ammonium and nitrate. The Lena and the Deltaic region apparently are considerable sources of nitrogen to nearshore coastal zone. The potential higher availability of inorganic nitrogen might be a source to enhance nitrous oxide emissions from terrestrial and aquatic sources to the atmosphere.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy