SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Paludan Sören R 1972) srt2:(2021)"

Sökning: WFRF:(Paludan Sören R 1972) > (2021)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergström, Petra, et al. (författare)
  • Herpes Simplex Virus 1 and 2 Infections during Differentiation of Human Cortical Neurons
  • 2021
  • Ingår i: Viruses-Basel. - : MDPI AG. - 1999-4915. ; 13:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Herpes simplex virus 1 (HSV-1) and 2 (HSV-2) can infect the central nervous system (CNS) with dire consequences; in children and adults, HSV-1 may cause focal encephalitis, while HSV-2 causes meningitis. In neonates, both viruses can cause severe, disseminated CNS infections with high mortality rates. Here, we differentiated human induced pluripotent stem cells (iPSCs) towards cortical neurons for infection with clinical CNS strains of HSV-1 or HSV-2. Progenies from both viruses were produced at equal quantities in iPSCs, neuroprogenitors and cortical neurons. HSV-1 and HSV-2 decreased viability of neuroprogenitors by 36.0% and 57.6% (p < 0.0001), respectively, 48 h post-infection, while cortical neurons were resilient to infection by both viruses. However, in these functional neurons, both HSV-1 and HSV-2 decreased gene expression of two markers of synaptic activity, CAMK2B and ARC, and affected synaptic activity negatively in multielectrode array experiments. However, unaltered secretion levels of the neurodegeneration markers tau and NfL suggested intact axonal integrity. Viral replication of both viruses was found after six days, coinciding with 6-fold and 22-fold increase in gene expression of cellular RNA polymerase II by HSV-1 and HSV-2, respectively. Our results suggest a resilience of human cortical neurons relative to the replication of HSV-1 and HSV-2.
  •  
2.
  • Paludan, Sören R, 1972, et al. (författare)
  • Constitutive and latent immune mechanisms exert 'silent' control of virus infections in the central nervous system
  • 2021
  • Ingår i: Current Opinion in Immunology. - : Elsevier BV. - 0952-7915. ; 72, s. 190-198
  • Tidskriftsartikel (refereegranskat)abstract
    • Viral infections in the central nervous system (CNS) can lead to severe disease manifestations often mediated by a combination of viral cytopathic effects and immunopathology. Moreover, neuronal tissue and brain activities are highly sensitive to excessive inflammation that disturb homeostasis. Immune responses to virus infections in the CNS should therefore be tightly balanced and limited in magnitude and duration to avoid immunopathology and tissue damage. Recent data from genetic studies of patients with viral infections in the CNS as well as experimental cell and animal models have provided evidence of non-redundant roles for constitutive and latent immune mechanisms, which mediate a first line of antiviral control without significantly triggering inflammatory activities. Collectively, accumulating data suggest the existence of a layer of immune mechanisms in the CNS exerting immediate control of infection, hence buffering the need for activation of more potent immune reactions with inherent potential to induce immunopathology and disease.
  •  
3.
  • Paludan, Sören R, 1972, et al. (författare)
  • Constitutive immune mechanisms: mediators of host defence and immune regulation
  • 2021
  • Ingår i: Nature Reviews Immunology. - : Springer Science and Business Media LLC. - 1474-1733 .- 1474-1741. ; 21:3, s. 137-150
  • Tidskriftsartikel (refereegranskat)abstract
    • The immune system enables organisms to combat infections and to eliminate endogenous challenges. Immune responses can be evoked through diverse inducible pathways. However, various constitutive mechanisms are also required for immunocompetence. The inducible responses of pattern recognition receptors of the innate immune system and antigen-specific receptors of the adaptive immune system are highly effective, but they also have the potential to cause extensive immunopathology and tissue damage, as seen in many infectious and autoinflammatory diseases. By contrast, constitutive innate immune mechanisms, including restriction factors, basal autophagy and proteasomal degradation, tend to limit immune responses, with loss-of-function mutations in these pathways leading to inflammation. Although they function through a broad and heterogeneous set of mechanisms, the constitutive immune responses all function as early barriers to infection and aim to minimize any disruption of homeostasis. Supported by recent human and mouse data, in this Review we compare and contrast the inducible and constitutive mechanisms of immunosurveillance. Constitutive innate immune mechanisms, such as restriction factors, RNA interference, antimicrobial peptides, basal autophagy and proteasomal degradation, exert early host defence activities that also aim to minimize tissue damage and homeostatic disruption by limiting the activation of inducible innate immunity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy