SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pandit Santosh 1987) srt2:(2016)"

Sökning: WFRF:(Pandit Santosh 1987) > (2016)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mokkapati, Venkata Raghu, 1981, et al. (författare)
  • NaB integrated graphene oxide membranes for enhanced cell viability and stem cell properties of human adipose stem cells
  • 2016
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 6:61, s. 56159-56165
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we present the integration of boron (NaB) with graphene oxide (GO) to develop a new class of membranes which are biocompatible and cost-effective for cell and tissue culture studies. Ethanol (EtOH) assisted the uniform dispersion of GO flakes on top of a glass substrate. We investigated the effect of a GO + NaB membrane on the growth and proliferation of hASCs. hASCs showed better cell viability on NaB integrated GO membranes compared to their respective controls. The concentrations of NaB and GO are 0.02% and 1/20 of stock (0.024%) respectively. To our knowledge this is the first time that enhanced cell proliferation and attachment ability of hASCs with NaB integrated GO membranes has been observed. Our study provides a platform for the development of 3D-GO scaffold systems combined with NaB in tissue engineering.
  •  
2.
  • Zhao, Changhong, 1984, et al. (författare)
  • Graphene oxide based coatings on Nitinol for biomedical implant applications: Effectively promote mammalian cell growth but kill bacteria
  • 2016
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 6:44, s. 38124-38134
  • Tidskriftsartikel (refereegranskat)abstract
    • © The Royal Society of Chemistry 2016. An important clinical challenge is the development of implant surfaces which have good integration with the surrounding tissues and simultaneously inhibit bacterial colonization thus preventing infection. Recently, graphene oxide (GO) a derivative of graphene, has gained considerable attention in the biomedical field owing to its biocompatibility, surface functionalizability and promising antimicrobial activity. In this study gelatin-functionalized graphene oxide (GOGel) was synthesized by a simple one step modification where GO and GOGel were used to develop surface coatings on nitinol substrates. Mouse osteoblastic cell (MC3T3-E1) functions including cell attachment, proliferation and differentiation were investigated on GO-based coatings. The results indicated that MC3T3-E1 cell functions were significantly enhanced on both GO coated nitinol (GO@NiTi) and GOGel coated nitinol (GOGel@NiTi) compared with the control nitinol without coating (NiTi). Especially, the GOGel@NiTi surface exhibited the best performance for cell adhesion, proliferation and differentiation. Additionally the antimicrobial property of GO-based coatings against E. coli was studied with the evaluation of colony forming units (CFU) counting, live/dead fluorescent staining and scanning electron microscope (SEM). We found that the growth of E. coli was inhibited on GOGel@NiTi and particularly on GO@NiTi. SEM images revealed that the cell membrane of bacteria lost their integrity and live/dead fluorescent images confirmed the low live/dead ratio of E. coli after incubation on GOGel@NiTi and GO@NiTi. We conclude that GO-based coatings on NiTi combine the antimicrobial activity and improved biocompatibility and therefore present a remarkable potential in biomedical implant applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy