SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pankratov Dmitry) srt2:(2015)"

Sökning: WFRF:(Pankratov Dmitry) > (2015)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pankratov, Dmitry, et al. (författare)
  • Scalable, high performance, enzymatic cathodes based on nanoimprint lithography
  • 2015
  • Ingår i: Beilstein Journal of Nanotechnology. - : Beilstein Institut. - 2190-4286. ; 6, s. 1377-1384
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we detail high performance, enzymatic electrodes for oxygen bio-electroreduction, which can be easily and reproducibly fabricated with industry-scale throughput. Planar and nanostructured electrodes were built on biocompatible, flexible polymer sheets, while nanoimprint lithography was used for electrode nanostructuring. To the best of our knowledge, this is one of the first reports concerning the usage of nanoimprint lithography for amperometric bioelectronic devices. The enzyme (Myrothecium verrucaria bilirubin oxidase) was immobilised on planar (control) and artificially nanostructured, gold electrodes by direct physical adsorption. The detailed electrochemical investigation of bioelectrodes was performed and the following parameters were obtained: open circuit voltage of approximately 0.75 V, and maximum bio-electrocatalytic current densities of 18 mu A/cm(2) and 58 mu A/cm(2) in air-saturated buffers versus 48 mu A/cm(2) and 186 mu A/cm(2) in oxygen-saturated buffers for planar and nanostructured electrodes, respectively. The half-deactivation times of planar and nanostructured biocathodes were measured to be 2 h and 14 h, respectively. The comparison of standard heterogeneous and bio-electrocatalytic rate constants showed that the improved bio-electrocatalytic performance of the nanostructured biocathodes compared to planar biodevices is due to the increased surface area of the nanostructured electrodes, whereas their improved operational stability is attributed to stabilisation of the enzyme inside nanocavities.
  •  
2.
  • Pankratov, Dmitry, et al. (författare)
  • Transparent and flexible, nanostructured and mediatorless glucose/oxygen enzymatic fuel cells
  • 2015
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 1873-2755 .- 0378-7753. ; 294, s. 501-506
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we detail transparent, flexible, nanostructured, membrane-less and mediator-free glucose/oxygen enzymatic fuel cells, which can be reproducibly fabricated with industrial scale throughput. The electrodes were built on a biocompatible flexible polymer, while nanoimprint lithography was used for their nanostructuring. The electrodes were covered with gold, their surfaces were visualised using scanning electron and atomic force microscopies, and they were also studied spectrophotometrically and electrochemically. The enzymatic fuel cells were fabricated following our previous reports on membrane-less and mediator-free biodevices in which cellobiose dehydrogenase and bilirubin oxidase were used as anodic and cathodic biocatalysts, respectively. The following average characteristics of transparent and flexible biodevices operating in glucose and chloride containing neutral buffers were registered: 0.63 V open-circuit voltage, and 0.6 mu W cm(-2) maximal power density at a cell voltage of 0.35 V. A transparent and flexible enzymatic fuel cell could still deliver at least 0.5 mu W cm(-2) after 12 h of continuous operation. Thus, such biodevices can potentially be used as self-powered biosensors or electric power sources for smart electronic contact lenses. (C) 2015 Elsevier B.V. All rights reserved.
  •  
3.
  • Pankratov, Dmitry, et al. (författare)
  • New nanobiocomposite materials for bioelectronic devices
  • 2015
  • Ingår i: Acta Naturae. - : Park Media. - 2075-8251. ; 7:1, s. 98-101
  • Tidskriftsartikel (refereegranskat)abstract
    • We have developed and synthesized nanobiocomposite materials based on graphene, poly(3,4-ethylenedioxythiophene), and glucose oxidase immobilized on the surface of various nanomaterials (gold nanoparticles and multi-walled carbon nanotubes) of different sizes (carbon nanotubes of different diameters). Comparative studies of the possible influence of the nanomaterial’s nature on the bioelectrocatalytic characteristics of glucose-oxidizing bioanodes in a neutral phosphate buffer solution demonstrated that the bioelectrocatalytic current densities of nanocomposite-based bioanodes are only weakly dependent on the size of the nanomaterial and are primarily defined by its nature. The developed nanobiocomposites are promising materials for new bioelectronic devices due to the ease in adjusting their capacitive and bioelectrocatalytic characteristics, which allows one to use them for the production of dual-function electrodes: i.e., electrodes which are capable of generating and storing electric power simultaneously.
  •  
4.
  • Zeng, Ting, et al. (författare)
  • Miniature direct electron transfer based sulphite/oxygen enzymatic fuel cells
  • 2015
  • Ingår i: Biosensors & bioelectronics. - : Elsevier. - 0956-5663 .- 1873-4235. ; 66, s. 39-42
  • Tidskriftsartikel (refereegranskat)abstract
    • A direct electron transfer (DET) based sulphite/oxygen biofuel cell is reported that utilises human sulphite oxidase (hSOx) and Myrothecium verrucaria bilirubin oxidase (MvBOx) and nanostructured gold electrodes. For bioanode construction, the nanostructured gold microelectrodes were further modified with 3,3′-dithiodipropionic acid di(N-hydroxysuccinimide ester) to which polyethylene imine was covalently attached. hSOx was adsorbed onto this chemically modified nanostructured electrode with high surface loading of electroactive enzyme and in presence of sulphite high anodic bioelectrocatalytic currents were generated with an onset potential of 0.05 V vs. NHE. The biocathode contained MvBOx directly adsorbed to the deposited gold nanoparticles for cathodic oxygen reduction starting at 0.71 V vs. NHE. Both enzyme electrodes were integrated to a DET-type biofuel cell. Power densities of 8 and 1 μW cm−2 were achieved at 0.15 V and 0.45 V of cell voltages, respectively, with the membrane based biodevices under aerobic conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy