SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pasqualotto R.) srt2:(2005-2009)"

Search: WFRF:(Pasqualotto R.) > (2005-2009)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lorenzini, R., et al. (author)
  • Self-organized helical equilibria as a new paradigm for ohmically heated fusion plasmas
  • 2009
  • In: Nature Physics. - : Springer Science and Business Media LLC. - 1745-2473 .- 1745-2481. ; 5:8, s. 570-574
  • Journal article (peer-reviewed)abstract
    • In the quest for new energy sources, the research on controlled thermonuclear fusion has been boosted by the start of the construction phase of the International Thermonuclear Experimental Reactor (ITER). ITER is based on the tokamak magnetic configuration, which is the best performing one in terms of energy confinement. Alternative concepts are however actively researched, which in the long term could be considered for a second generation of reactors. Here, we show results concerning one of these configurations, the reversed-field pinch (RFP). By increasing the plasma current, a spontaneous transition to a helical equilibrium occurs, with a change of magnetic topology. Partially conserved magnetic flux surfaces emerge within residual magnetic chaos, resulting in the onset of a transport barrier. This is a structural change and sheds new light on the potential of the RFP as the basis for a low-magnetic-field ohmic fusion reactor.
  •  
2.
  • Martin, P., et al. (author)
  • Overview of RFX-mod results
  • 2009
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 49:10, s. 104019-
  • Journal article (peer-reviewed)abstract
    • With the exploration of the MA plasma current regime in up to 0.5 s long discharges, RFX-mod has opened new and very promising perspectives for the reversed field pinch (RFP) magnetic configuration, and has made significant progress in understanding and improving confinement and in controlling plasma stability. A big leap with respect to previous knowledge and expectations on RFP physics and performance has been made by RFX-mod since the last 2006 IAEA Fusion Energy Conference. A new self-organized helical equilibrium has been experimentally achieved ( the Single Helical Axis-SHAx-state), which is the preferred state at high current. Strong core electron transport barriers characterize this regime, with electron temperature gradients comparable to those achieved in tokamaks, and by a factor of 4 improvement in confinement time with respect to the standard RFP. RFX-mod is also providing leading edge results on real-time feedback control of MHD instabilities, of general interest for the fusion community.
  •  
3.
  • Puiatti, M. E., et al. (author)
  • Helical equilibria and magnetic structures in the reversed field pinch and analogies to the tokamak and stellarator
  • 2009
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 51:12, s. 124031-
  • Journal article (peer-reviewed)abstract
    • The reversed field pinch configuration is characterized by the presence of magnetic structures both in the core and at the edge: in the core, at high plasma current the spontaneous development of a helical structure is accompanied by the appearance of internal electron transport barriers; at the edge strong pressure gradients, identifying an edge transport barrier, are observed too, related to the position of the field reversal surface. The aim of this paper is the experimental characterization of both the internal and edge transport barriers in relation to the magnetic topology, discussing possible analogies and differences with other confinement schemes.
  •  
4.
  • Beurskens, M. N. A., et al. (author)
  • Pedestal width and ELM size identity studies in JET and DIII-D; implications for ITER
  • 2009
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 51:12, s. 124051-
  • Journal article (peer-reviewed)abstract
    • The dependence of the H-mode edge transport barrier width on normalized ion gyroradius (rho* = rho/a) in discharges with type I ELMs was examined in experiments combining data for the JET and DIII-D tokamaks. The plasma configuration as well as the local normalized pressure (beta), collisionality (nu*), Mach number and the ratio of ion and electron temperature at the pedestal top were kept constant, while rho* was varied by a factor of four. The width of the steep gradient region of the electron temperature (T-e) and density (n(e)) pedestals normalized to machine size showed no or only a weak trend with rho*. A rho(1/2) or rho(1) dependence of the pedestal width, given by some theoretical predictions, is not supported by the current experiments. This is encouraging for the pedestal scaling towards ITER as it operates at lower rho* than existing devices. Some differences in pedestal structure and ELM behaviour were, however, found between the devices; in the DIII-D discharges, the n(e) and T-e pedestal were aligned at high rho* but the ne pedestal shifted outwards in radius relative to T-e as rho* decreases, while on JET the profiles remained aligned while rho* was scanned by a factor of two. The energy loss at an ELM normalized to the pedestal energy increased from 10% to 40% as rho* increased by a factor of two in the DIII-D discharges but no such variation was observed in the case of JET. The measured pedestal pressures and widths were found to be consistent with the predictions from modelling based on peeling-ballooning stability theory, and are used to make projections towards ITER
  •  
5.
  • Alfier, A., et al. (author)
  • Electron temperature profiles in RFX-mod
  • 2008
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 50:3, s. 035013-
  • Journal article (peer-reviewed)abstract
    • Electron temperature profiles have been measured by the main Thomson scattering ( TS) diagnostic on the RFX-mod reversed field pinch experiment in Padova, Italy. The increased accuracy and spatial and temporal resolution permits one to measure in detail the improvements in T-e profiles, obtained with the active saddle coil system, which allows one to obtain core temperature 30% higher and scaling stronger with plasma current, steeper gradients in the core (+30%) and at the edge (+60%). 1D power balance calculations show that the active control of MHD modes largely reduces the values of electron heat diffusivity along the whole plasma radius, with similar to 50% reduction at the edge and similar to 30% in the core. The resulting electron energy confinement time is doubled. Further improvements occur during quasi-single helicity (QSH) states: the new TS allows one to study in detail the hot island that develops in the core. A characterization of the island electron thermal profile is presented, in terms of width, temperature increase, gradients and asymmetry; the effect on density profile is also discussed. A 2D transport code has been applied to calculate the heat diffusivity inside the magnetic island corresponding to the QSH state, also considering the correlation between temperature increase and pressure gradient with the chaos level around the island. Finally, electron energy confinement time during QSH states is compared with that in MH states.
  •  
6.
  •  
7.
  • Annibaldi, Silvia Valeria, et al. (author)
  • Strong transport reduction in the helical core of the reversed-field pinch
  • 2007
  • In: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 14:11, s. 112515-
  • Journal article (peer-reviewed)abstract
    • An explanation of the strong heating observed in the core of a reversed-field pinch in the quasi-single-helicity state is presented. A magnetic island is formed, in which the heat transport coefficient is much smaller than in the surrounding chaotic sea, because of the formation of well defined magnetic surfaces. The values of the thermal conductivity obtained with the M1TEV [F. Porcelli , Phys. Rev. Lett 82, 1458 (1999)] two-dimensional transport code are in very good agreement with the estimates of the ion diffusion coefficient inside the island, given by a Hamiltonian guiding center code. Moreover, the values of thermal conductivity are in the tokamak range, and are consistent with the peak temperatures measured in the Reversed Field eXperiment [P. Sonato , Fusion Eng. Des. 66-68, 161 (2003)] at Consorzio RFX, Padova, Italy. The effect of the island width and the different powers deposited inside the island on the final temperature peak are also investigated.
  •  
8.
  • Frassinetti, Lorenzo, et al. (author)
  • Heat diffusivity model and temperature simulations in RFX-mod
  • 2008
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 48:4, s. 045007-
  • Journal article (peer-reviewed)abstract
    • The core transport properties of reversed field pinch (RFP) plasmas in the standard regime are generally associated with a high level of magnetic chaos. Indeed, in the RFX-mod RFP device, the core temperature profile is often very flat, indicating that the heat diffusivity is very high. In contrast, the temperature edge profile has a steep gradient, indicating that the edge is characterized by low heat transport. These simple experimental evidences are the basis of a heat diffusivity model that is used as an input to a numerical code for plasma temperature simulation. The simulated temperature reproduces with good accuracy both the experimental T, time evolution and its radial profiles in different plasma scenarios, showing that the model is useful for estimating the plasma heat diffusivity. This work suggests that the heat transport properties in the RFP plasma core are dominated by magnetic chaos in standard discharges and suggests a simple way to estimate electron heat diffusivity from density, input power and magnetic fluctuation measurements.
  •  
9.
  • Martin, P., et al. (author)
  • A new paradigm for RFP magnetic self-organization : results and challenges
  • 2007
  • In: Plasma Physics and Controlled Fusion. - 0741-3335 .- 1361-6587. ; 49:5A, s. A177-A193
  • Journal article (peer-reviewed)abstract
    • This paper reports the most recent experimental results on quasi-single helicity (QSH) reversed field pinch (RFP) plasmas. QSH is considered a key element towards the full experimental realization of the theoretically predicted single helicity (SH) RFP. The SH RFP, where an individual resistive kink mode and its harmonics drive the dynamo electric field, is predicted to have superior confinement performance with respect to the standard multiple helicity (MH) state. Magnetic chaos is in fact strongly reduced in the SH RFP, which therefore retains all the positive features of the RFP configuration without the problems connected with the magnetic turbulence typical of the MH scenario. Data from the RFX-mod device, presented here, provide a more complete description of QSH states, indicate a positive synergy between the growth of the dominant resistive mode and the decrease in the secondary modes (with reduction of magnetic chaos and hints of confinement improvement outside the helical domain), and showa promising scaling with plasma current. Initial experiments on active control of QSH states in RFX-mod are presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view