SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Patra P) srt2:(2020-2023)"

Sökning: WFRF:(Patra P) > (2020-2023)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hartley, Philippa, et al. (författare)
  • SKA Science Data Challenge 2: analysis and results
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 523:2, s. 1967-1993
  • Tidskriftsartikel (refereegranskat)abstract
    • The Square Kilometre Array Observatory (SKAO) will explore the radio sky to new depths in order to conduct transformational science. SKAO data products made available to astronomers will be correspondingly large and complex, requiring the application of advanced analysis techniques to extract key science findings. To this end, SKAO is conducting a series of Science Data Challenges, each designed to familiarize the scientific community with SKAO data and to drive the development of new analysis techniques. We present the results from Science Data Challenge 2 (SDC2), which invited participants to find and characterize 233 245 neutral hydrogen (H i) sources in a simulated data product representing a 2000 h SKA-Mid spectral line observation from redshifts 0.25-0.5. Through the generous support of eight international supercomputing facilities, participants were able to undertake the Challenge using dedicated computational resources. Alongside the main challenge, 'reproducibility awards' were made in recognition of those pipelines which demonstrated Open Science best practice. The Challenge saw over 100 participants develop a range of new and existing techniques, with results that highlight the strengths of multidisciplinary and collaborative effort. The winning strategy - which combined predictions from two independent machine learning techniques to yield a 20 per cent improvement in overall performance - underscores one of the main Challenge outcomes: that of method complementarity. It is likely that the combination of methods in a so-called ensemble approach will be key to exploiting very large astronomical data sets.
  •  
2.
  • Ito, A., et al. (författare)
  • Cold-Season Methane Fluxes Simulated by GCP-CH4 Models
  • 2023
  • Ingår i: Geophysical Research Letters. - 0094-8276. ; 50:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Cold-season methane (CH4) emissions may be poorly constrained in wetland models. We examined cold-season CH4 emissions simulated by 16 models participating in the Global Carbon Project model intercomparison and analyzed temporal and spatial patterns in simulation results using prescribed inundation data for 2000–2020. Estimated annual CH4 emissions from northern (>60°N) wetlands averaged 10.0 ± 5.5 Tg CH4 yr−1. While summer CH4 emissions were well simulated compared to in-situ flux measurement observations, the models underestimated CH4 during September to May relative to annual total (27 ± 9%, compared to 45% in observations) and substantially in the months with subzero air temperatures (5 ± 5%, compared to 27% in observations). Because of winter warming, nevertheless, the contribution of cold-season emissions was simulated to increase at 0.4 ± 0.8% decade−1. Different parameterizations of processes, for example, freezing–thawing and snow insulation, caused conspicuous variability among models, implying the necessity of model refinement.
  •  
3.
  • Bustamante, Mercedes, et al. (författare)
  • Ten new insights in climate science 2023
  • 2023
  • Ingår i: Global Sustainability. - : CAMBRIDGE UNIV PRESS. - 2059-4798. ; 7
  • Forskningsöversikt (refereegranskat)abstract
    • Non-technical summary We identify a set of essential recent advances in climate change research with high policy relevance, across natural and social sciences: (1) looming inevitability and implications of overshooting the 1.5 degrees C warming limit, (2) urgent need for a rapid and managed fossil fuel phase-out, (3) challenges for scaling carbon dioxide removal, (4) uncertainties regarding the future contribution of natural carbon sinks, (5) intertwinedness of the crises of biodiversity loss and climate change, (6) compound events, (7) mountain glacier loss, (8) human immobility in the face of climate risks, (9) adaptation justice, and (10) just transitions in food systems.Technical summary The Intergovernmental Panel on Climate Change Assessment Reports provides the scientific foundation for international climate negotiations and constitutes an unmatched resource for researchers. However, the assessment cycles take multiple years. As a contribution to cross- and interdisciplinary understanding of climate change across diverse research communities, we have streamlined an annual process to identify and synthesize significant research advances. We collected input from experts on various fields using an online questionnaire and prioritized a set of 10 key research insights with high policy relevance. This year, we focus on: (1) the looming overshoot of the 1.5 degrees C warming limit, (2) the urgency of fossil fuel phase-out, (3) challenges to scale-up carbon dioxide removal, (4) uncertainties regarding future natural carbon sinks, (5) the need for joint governance of biodiversity loss and climate change, (6) advances in understanding compound events, (7) accelerated mountain glacier loss, (8) human immobility amidst climate risks, (9) adaptation justice, and (10) just transitions in food systems. We present a succinct account of these insights, reflect on their policy implications, and offer an integrated set of policy-relevant messages. This science synthesis and science communication effort is also the basis for a policy report contributing to elevate climate science every year in time for the United Nations Climate Change Conference.Social media summary We highlight recent and policy-relevant advances in climate change research - with input from more than 200 experts.
  •  
4.
  • Bustamante, Mercedes, et al. (författare)
  • Ten New Insights in Climate Science 2023/2024
  • 2023
  • Ingår i: Global Sustainability. - 2059-4798.
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-technical summary: We identify a set of essential recent advances in climate change research with high policy relevance, across natural and social sciences: (1) looming inevitability and implications of overshooting the 1.5°C warming limit, (2) urgent need for a rapid and managed fossil fuel phase-out, (3) challenges for scaling carbon dioxide removal, (4) uncertainties regarding the future contribution of natural carbon sinks, (5) intertwinedness of the crises of biodiversity loss and climate change, (6) compound events, (7) mountain glacier loss, (8) human immobility in the face of climate risks, (9) adaptation justice, and (10) just transitions in food systems. Technical summary The IPCC Assessment Reports offer the scientific foundation for international climate negotiations and constitute an unmatched resource for climate change researchers. However, the assessment cycles take multiple years. As a contribution to cross- and interdisciplinary understanding across diverse climate change research communities, we have streamlined an annual process to identify and synthesise essential research advances. We collected input from experts on different fields using an online questionnaire and prioritised a set of ten key research insights with high policy relevance. This year we focus on: (1) looming overshoot of the 1.5°C warming limit, (2) urgency of phasing-out fossil fuels, (3) challenges for scaling carbon dioxide removal, (4) uncertainties regarding the future of natural carbon sinks, (5) need for join governance of biodiversity loss and climate change, (6) advances in the science of compound events, (7) mountain glacier loss, (8) human immobility in the face of climate risks, (9) adaptation justice, and (10) just transitions in food systems. We first present a succinct account of these Insights, reflect on their policy implications, and offer an integrated set of policy relevant messages. This science synthesis and science communication effort is also the basis for a report targeted to policymakers as a contribution to elevate climate science every year, in time for the UNFCCC COP. Social media summary We highlight recent and policy-relevant advances in climate change research - with input from more than 200 experts 1.
  •  
5.
  • Maccari, Maria Elena, et al. (författare)
  • Activated phosphoinositide 3-kinase δ syndrome: Update from the ESID Registry and comparison with other autoimmune-lymphoproliferative inborn errors of immunity.
  • 2023
  • Ingår i: The Journal of allergy and clinical immunology. - 1097-6825. ; 152:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Activated phosphoinositide-3-kinase δ syndrome (APDS) is an inborn error of immunity (IEI) with infection susceptibility and immune dysregulation, clinically overlapping with other conditions. Management depends on disease evolution, but predictors of severe disease are lacking.This study sought to report the extended spectrum of disease manifestations in APDS1 versus APDS2; compare these to CTLA4 deficiency, NFKB1 deficiency, and STAT3 gain-of-function (GOF) disease; and identify predictors of severity in APDS.Data was collected from the ESID (European Society for Immunodeficiencies)-APDS registry and was compared with published cohorts of the other IEIs.The analysis of 170 patients with APDS outlines high penetrance and early onset of APDS compared to the other IEIs. The large clinical heterogeneity even in individuals with the same PIK3CD variant E1021K illustrates how poorly the genotype predicts the disease phenotype and course. The high clinical overlap between APDS and the other investigated IEIs suggests relevant pathophysiological convergence of the affected pathways. Preferentially affected organ systems indicate specific pathophysiology: bronchiectasis is typical of APDS1; interstitial lung disease and enteropathy are more common in STAT3 GOF and CTLA4 deficiency. Endocrinopathies are most frequent in STAT3 GOF, but growth impairment is also common, particularly in APDS2. Early clinical presentation is a risk factor for severe disease in APDS.APDS illustrates how a single genetic variant can result in a diverse autoimmune-lymphoproliferative phenotype. Overlap with other IEIs is substantial. Some specific features distinguish APDS1 from APDS2. Early onset is a risk factor for severe disease course calling for specific treatment studies in younger patients.
  •  
6.
  • Ozgur, Erdogan, et al. (författare)
  • Lanthanide [Terbium(III)]-Doped Molecularly Imprinted Nanoarchitectures for the Fluorimetric Detection of Melatonin
  • 2020
  • Ingår i: Industrial & Engineering Chemistry Research. - : AMER CHEMICAL SOC. - 0888-5885 .- 1520-5045. ; 59:36, s. 16068-16076
  • Tidskriftsartikel (refereegranskat)abstract
    • Polymerizable terbium(III) complex-based fluorescent molecular imprinted smart nanoparticles were synthesized for the quantitative determination of potential metabolic destitution biomarkers. Melatonin has been reported to be one of the key factors in seasonal affective disorder (SAD) and was chosen as a model metabolite to demonstrate a novel molecularly imprinted polymer (MIP) nanoparticle sensor. We exploited lanthanide ion complexes in our biosensing platforms due to their deeper penetration ability, negligible autofluorescence, lack of photobleaching and photoblinking, and their sharp absorption and emission bands, extreme photostability, and long lifetime. Given the high affinity of lanthanide ions for carboxylic acid groups, we used two amino acid-based functional monomers, N-methacryloyl-L-tryptophan and N-methacryloyl-L-aspartic acid, to coordinate terbium-(III) ions and melatonin, respectively. The fluorescent MIP nanoparticles were synthesized using a miniemulsion polymerization technique after forming complexes between terbium(III):MA-Asp and melatonin:MATrp molecules. Due to the polymerizability of lanthanide complexes, they were readily inserted into the polymeric chain, which enabled homogeneous distribution as well as closer orientation to the imprinted cavities for selective melatonin recognition.
  •  
7.
  • Patra, V, et al. (författare)
  • Potential of Skin Microbiome, Pro- and/or Pre-Biotics to Affect Local Cutaneous Responses to UV Exposure
  • 2020
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The human skin hosts innumerable microorganisms and maintains homeostasis with the local immune system despite the challenges offered by environmental factors such as ultraviolet radiation (UVR). UVR causes cutaneous alterations such as acute (i.e., sunburn) and chronic inflammation, tanning, photoaging, skin cancer, and immune modulation. Phototherapy on the other hand is widely used to treat inflammatory skin diseases such as psoriasis, atopic dermatitis, polymorphic light eruption and graft-versus-host disease (GvHD), as well as neoplastic skin diseases such as cutaneous T cell lymphoma, among others. Previous work has addressed the use of pro- and pre-biotics to protect against UVR through anti-oxidative, anti-inflammatory, anti-aging, anti-carcinogenic and/or pro-and contra-melanogenic properties. Herein, we discuss and share perspectives of the potential benefits of novel treatment strategies using microbes and pro- and pre-biotics as modulators of the skin response to UVR, and how they could act both for protection against UVR-induced skin damage and as enhancers of the UVR-driven therapeutic effects on the skin.
  •  
8.
  • Petrescu, Ana Maria Roxana, et al. (författare)
  • The consolidated European synthesis of CH4 and N2O emissions for the European Union and United Kingdom: 1990-2017
  • 2021
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 13:5, s. 2307-2362
  • Tidskriftsartikel (refereegranskat)abstract
    • Reliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27 C UK). We integrate recent emission inventory data, ecosystem process-based model results and inverse modeling estimates over the period 1990-2017. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported to the UN climate convention UNFCCC secretariat in 2019. For uncertainties, we used for NGHGIs the standard deviation obtained by varying parameters of inventory calculations, reported by the member states (MSs) following the recommendations of the IPCC Guidelines. For atmospheric inversion models (TD) or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or model-specific uncertainties when reported. In comparing NGHGIs with other approaches, a key source of bias is the activities included, e.g., anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separation between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions. Over the 2011-2015 period, which is the common denominator of data availability between all sources, the anthropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 TgCH(4) yr (-1) (EDGAR v5.0) and 19.0 TgCH(4) yr(-1) (GAINS), consistent with the NGHGI estimates of 18.9 +/- 1.7 TgCH(4) yr(-1). The estimates of TD total inversions give higher emission estimates, as they also include natural emissions. Over the same period regional TD inversions with higher-resolution atmospheric transport models give a mean emission of 28.8 TgCH(4) yr(-1). Coarser-resolution global TD inversions are consistent with regional TD inversions, for global inversions with GOSAT satellite data (23.3 TgCH(4) yr(-1)) and surface network (24.4 TgCH(4) yr (-1)). The magnitude of natural peatland emissions from the JSBACH-HIMMELI model, natural rivers and lakes emissions, and geological sources together account for the gap between NGHGIs and inversions and account for 5.2 TgCH(4) yr(-1). For N2O emissions, over the 2011-2015 period, both BU approaches (EDGAR v5.0 and GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 TgN(2)Oyr(-1), respectively, agreeing with the NGHGI data (0.9 0.6 TgN(2)Oyr(-1)). Over the same period, the average of the three total TD global and regional inversions was 1.3 +/- 0.4 and 1.3 +/- 0.1 TgN(2)Oyr(-1), respectively. The TD and BU comparison method defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets both at the EU CUK scale and at the national scale.
  •  
9.
  • Petrescu, Ana Maria Roxana, et al. (författare)
  • The consolidated European synthesis of CH4 and N2O emissions for the European Union and United Kingdom: 1990-2019
  • 2023
  • Ingår i: Earth System Science Data. - : COPERNICUS GESELLSCHAFT MBH. - 1866-3508 .- 1866-3516. ; 15:3, s. 1197-1268
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of the spatial distribution of the fluxes of greenhouse gases (GHGs) and their temporal variability as well as flux attribution to natural and anthropogenic processes is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement and to inform its global stocktake. This study provides a consolidated synthesis of CH4 and N2O emissions using bottom-up (BU) and top-down (TD) approaches for the European Union and UK (EU27 + UK) and updates earlier syntheses (Petrescu et al., 2020, 2021). The work integrates updated emission inventory data, process-based model results, data-driven sector model results and inverse modeling estimates, and it extends the previous period of 1990-2017 to 2019. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported by parties under the United Nations Framework Convention on Climate Change (UNFCCC) in 2021. Uncertainties in NGHGIs, as reported to the UNFCCC by the EU and its member states, are also included in the synthesis. Variations in estimates produced with other methods, such as atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), arise from diverse sources including within-model uncertainty related to parameterization as well as structural differences between models. By comparing NGHGIs with other approaches, the activities included are a key source of bias between estimates, e.g., anthropogenic and natural fluxes, which in atmospheric inversions are sensitive to the prior geospatial distribution of emissions. For CH4 emissions, over the updated 2015-2019 period, which covers a sufficiently robust number of overlapping estimates, and most importantly the NGHGIs, the anthropogenic BU approaches are directly comparable, accounting for mean emissions of 20.5 TgCH(4) yr(-1) (EDGARv6.0, last year 2018) and 18.4 TgCH(4) yr(-1) (GAINS, last year 2015), close to the NGHGI estimates of 17 :5 +/- 2 :1 TgCH(4) yr(-1). TD inversion estimates give higher emission estimates, as they also detect natural emissions. Over the same period, high-resolution regional TD inversions report a mean emission of 34 TgCH(4) yr(-1). Coarser-resolution global-scale TD inversions result in emission estimates of 23 and 24 TgCH(4) yr(-1) inferred from GOSAT and surface (SURF) network atmospheric measurements, respectively. The magnitude of natural peatland and mineral soil emissions from the JSBACH-HIMMELI model, natural rivers, lake and reservoir emissions, geological sources, and biomass burning together could account for the gap between NGHGI and inversions and account for 8 TgCH(4) yr(-1). For N2O emissions, over the 2015-2019 period, both BU products (EDGARv6.0 and GAINS) report a mean value of anthropogenic emissions of 0.9 TgN(2)Oyr(-1), close to the NGHGI data (0 :8 +/- 55% TgN(2)Oyr(-1)). Over the same period, the mean of TD global and regional inversions was 1.4 TgN(2)Oyr(-1) (excluding TOMCAT, which reported no data). The TD and BU comparison method defined in this study can be operationalized for future annual updates for the calculation of CH4 and N2O budgets at the national and EU27 C UK scales. Future comparability will be enhanced with further steps involving analysis at finer temporal resolutions and estimation of emissions over intra-annual timescales, which is of great importance for CH4 and N2O, and may help identify sector contributions to divergence between prior and posterior estimates at the annual and/or inter-annual scale. Even if currently comparison between CH4 and N2O inversion estimates and NGHGIs is highly uncertain because of the large spread in the inversion results, TD inversions inferred from atmospheric observations represent the most independent data against which inventory totals can be compared. With anticipated improvements in atmospheric modeling and observations, as well as modeling of natural fluxes, TD inversions may arguably emerge as the most powerful tool for verifying emission inventories for CH4, N2O and other GHGs. The referenced dataset srelated to figures are visualized at https://doi.org/10.5281/zenodo.7553800 (Petrescu et al., 2023).
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
Typ av publikation
tidskriftsartikel (11)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (13)
Författare/redaktör
Ciais, Philippe (3)
Bastviken, David (3)
McNorton, Joe (3)
Janssens-Maenhout, G ... (3)
Saunois, Marielle (3)
Tsuruta, Aki (3)
visa fler...
Huss, Matthias (2)
Selomane, Odirilwe (2)
Haussaire, Jean Matt ... (2)
Canadell, Josep G. (2)
Peters, Glen P. (2)
McGrath, Matthew J. (2)
Broadgate, Wendy (2)
Peylin, Philippe (2)
Geden, Oliver (2)
Obura, David (2)
Sokona, Youba (2)
Juhola, Sirkku (2)
Lwasa, Shuaib (2)
Roy, Joyashree (2)
Ospina, Daniel (2)
Bastos, Ana (2)
Persson, Åsa (2)
Thompson, Rona L. (2)
Aalto, Tuula (2)
Bergamaschi, Peter (2)
Brunner, Dominik (2)
Houweling, Sander (2)
Winiwarter, Wilfried (2)
Okereke, Chukwumerij ... (2)
Stammer, Detlef (2)
Huq, Saleemul (2)
Farbotko, Carol (2)
van der Geest, Kees (2)
Ebi, Kristie L. (2)
Pongratz, Julia (2)
Bustamante, Mercedes (2)
Achakulwisut, Ploy (2)
Aggarwal, Anubha (2)
Carr, Edward R. (2)
Cleugh, Helen A. (2)
Edwards, Clea (2)
Fernandez-Martinez, ... (2)
Fuss, Sabine (2)
Gruber, Nicolas (2)
Harrington, Luke J. (2)
Hauck, Judith (2)
Hausfather, Zeke (2)
Hebden, Sophie (2)
Hebinck, Aniek (2)
visa färre...
Lärosäte
Linköpings universitet (5)
Karolinska Institutet (4)
Göteborgs universitet (2)
Lunds universitet (2)
Chalmers tekniska högskola (2)
Stockholms universitet (1)
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (9)
Medicin och hälsovetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy